Skip to main content
Log in

Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with “Browning” in Mesenteric Fat of Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Continuous exposure to cold leads to activation of adaptive thermogenesis in brown adipose tissue but also to induction of brown/beige cell phenotype in white adipose tissue. The aim of this work was to investigate whether prior exposure to immobilization (IMO) stress may affect immune response associated with adipocyte “browning” in mesenteric adipose tissue (mWAT). In the first experiment, Sprague–Dawley rats were exposed to acute (3 h) or prolonged (7 days) cold exposure (4 ± 1 °C). 7-day cold stimulated gene expression of uncoupling protein 1 and other “browning”-associated factors. In the second experiment, rats were immobilized for 7 days (2 h daily) followed by exposure to continuous cold for 1 or 7 days. Prior IMO exaggerated cold-induced sympathetic response manifested by elevated tyrosine hydroxylase (TH) protein and norepinephrine in mWAT. Induction of non-sympathetic catecholamine production demonstrated by elevated TH and PNMT (phenylethanolamine N-methyltransferase) mRNAs was observed after 7-day cold; however, prior IMO attenuated this response. 7-day cold-induced gene expression of anti-inflammatory mediators (IL-4, IL-13, IL-10, adiponectin), markers of M2 macrophages (Arg1, Retnlα), and eosinophil-associated molecules (eotaxin, IL-5), while inhibited expression of pro-inflammatory cytokines (IFNγ, IL-1b, IL-6, IL-17) and monocytes (MCP-1, Ly6C). This immune response was accompanied by elevated expression of uncoupling protein-1 and other thermogenic factors. Rats exposed to prior IMO exhibited inhibition of cold-induced immune and “browning”-related expression pattern. Overall, we demonstrated that 7-day cold-induced browning”-associated changes in rat mWAT, while prior history of repeated stress prevented this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexaki VI, Chavakis T (2016) The role of innate immunity in the regulation of brown and beige adipogenesis. Rev Endocr Metab Disord 17(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Crespo M, Csikasz RI, Martínez-Sánchez N, Diéguez C, Cannon B, Nedergaard J, López M (2016) Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol Metab 5(4):271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala-Lopez N, Watts SW (2016) New actions of an old friend: perivascular adipose tissue’s adrenergic mechanisms. Br J Pharmacol. doi:10.1111/bph.13663

    PubMed  Google Scholar 

  • Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, Fink GD, Watts SW (2014) Perivascular adipose tissue contains functional catecholamines. Pharmacol Res Perspect 2(3):e00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244–E1253

    Article  CAS  PubMed  Google Scholar 

  • Bertin B, Desreumaux P, Dubuquoy L (2010) Obesity, visceral fat and Crohn’s disease. Curr Opin Clin Nutr Metab Care 13:574–580

    Article  CAS  PubMed  Google Scholar 

  • Bianco AC, McAninch EA (2013) The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol 1(3):250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco AC, Sheng XY, Silva JE (1988) Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J Biol Chem 263:18168–18175

    CAS  PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  • Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63:3253–3265

    Article  PubMed  Google Scholar 

  • Chang L, Milton H, Eitzman DT, Chen YE (2013) Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J 77(1):11–18

    Article  PubMed  Google Scholar 

  • Chovatiya R, Medzhitov R (2014) Stress, inflammation, and defense of homeostasis. Mol Cell 54(2):281–288

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252 Erratum in: JAMA 268(2):200

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Pénicaud L, Casteilla L (1992) Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103(4):931–942

    CAS  PubMed  Google Scholar 

  • Dhabhar FS (2014) Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 58(2–3):193–210

    Article  CAS  PubMed  Google Scholar 

  • Dronjak S, Jezova D, Kvetnansky R (2004) Different effects of novel stressors on sympathoadrenal system activation in rats exposed to long-term immobilization. Ann N Y Acad Sci 1018:113–123

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582

    Article  PubMed  PubMed Central  Google Scholar 

  • Ippoliti F, Canitano N, Businaro R (2013) Stress and obesity as risk factors in cardiovascular diseases: a neuroimmune perspective. J Neuroimmune Pharmacol 8(1):212–226

    Article  PubMed  Google Scholar 

  • Khazen W, M’Bika JP, Tomkiewicz C, Benelli C, Chany C, Achour A, Forest C (2005) Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett 579(25):5631–5634

    Article  CAS  PubMed  Google Scholar 

  • Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR (2012) Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci USA 109:9635–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35(5):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Kranendonk ME, van Herwaarden JA, Stupkova T, de Jager W, Vink A, Moll FL, Kalkhoven E, Visseren FL (2015) Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease: distinct fat depots and vascular risk factors. Atherosclerosis 239(2):419–427

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky R, Mikulaj L (1970) Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87:738–743

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky R, Ukropec J, Laukova M, Manz B, Pacak K, Vargovic P (2012) Stress stimulates production of catecholamines in rat adipocytes. Cell Mol Neurobiol 32(5):801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laukova M, Vargovic P, Krizanova O, Kvetnansky R (2010) Repeated stress down-regulates β(2)- and α (2C)-adrenergic receptors and up-regulates gene expression of IL-6 in the rat spleen. Cell Mol Neurobiol 30(7):1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Petkova Anelia P, Mottillo Emilio P, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta 3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160(1–2):74–87

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu J, Wang G, Yu J, Sheng Y, Wang C, Lv Y, Lv S, Qi H, Di W, Yin C (2015) Determination of UCP1 expression in subcutaneous and perirenal adipose tissues of patients with hypertension. Endocrine 50(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W, Castellot JJ Jr, Rosen ED, Spiegelman BM (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19(5):810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loncar D (1992) Brown adipose tissue as a derivative of mesoderm grafted below the kidney capsule. A model for differentiation of isolated rat mesoderm. Int J Dev Biol 36(2):265–274

  • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real JM, López M (2017) Thyroid hormones induce browning of white fat. J Endocrinol 232(2):351–362

    Article  PubMed  Google Scholar 

  • Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM (2013) Innate lymphoid type 2 cells sustain visceral adiposetissue eosinophils and alternatively activated macrophages. J Exp Med 210(3):535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard J, Dicker A, Cannon B (1997) The interaction between thyroid and brown-fat thermogenesis. Central or peripheral effects? Ann N Y Acad Sci 813:712–717

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480(7375):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE, Locksley RM (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502(7470):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Nguyen Khoa D, Odegaard Justin I, Cui X, Tian X, Locksley Richard M, Palmiter Richard D, Chawla A (2014) Eosinophils and Type 2 Cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Shan B, Yang L, Liu Y (2016) Adipose tissue macrophage in immune regulation of metabolism. Sci China Life Sci 59(12):1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzoli M, Bartolomucci A (2016) The dichotomous effect of chronic stress on obesity. Trends Endocrinol Metab 27(7):504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabban EL, Serova LI (2007) Influence of prior experience with homotypic or heterotypic stressor on stress reactivity in catecholaminergic systems. Stress 10(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108(1):143–148

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiga F, Harrison LR, MacSweeney CP, Thomson FJ, Craighead M, Lightman SL (2009) Effect of vasopressin 1b receptor blockade on the hypothalamic-pituitary-adrenal response of chronically stressed rats to a heterotypic stressor. J Endocrinol 200(3):285–291

    Article  CAS  PubMed  Google Scholar 

  • Vaccarino V, Bremner JD (2005) Stress response and the metabolic syndrome. Hosp Physician 11:1–11

  • van den Berg SM, van Dam AD, Rensen PC, de Winther MP, Lutgens E (2017) Immune modulation of brown(ing) adipose tissue in obesity. Endocr Rev 38:46–68

    PubMed  Google Scholar 

  • Vargovic P, Ukropec J, Laukova M, Cleary S, Manz B, Pacak K, Kvetnansky R (2011) Adipocytes as a new source of catecholamine production. FEBS Lett 585(14):2279–2284

    Article  CAS  PubMed  Google Scholar 

  • Vargovic P, Ukropec J, Laukova M, Kurdiova T, Balaz M, Manz B, Ukropcova B, Kvetnansky R (2013) Repeated immobilization stress induces catecholamine production in rat mesenteric adipocytes. Stress 16(3):340–352

    Article  CAS  PubMed  Google Scholar 

  • Vargovic P, Laukova M, Ukropec J, Manz G, Kvetnansky R (2016a) Lipopolysaccharide induces catecholamine production in mesenteric adipose tissue of rats previously exposed to immobilization stress. Stress 19(4):439–447

    Article  CAS  PubMed  Google Scholar 

  • Vargovic P, Manz G, Kvetnansky R (2016b) Continuous cold exposure induces an anti-inflammatory response in mesenteric adipose tissue associated with catecholamine production and thermogenin expression in rats. Endocr Regul 50(3):137–144

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yang X (2016) Inter-organ regulation of adipose tissue browning. Cell Mol Life Sci. doi:10.1007/s00018-016-2420-x

    Google Scholar 

  • Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332(6026):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young P, Wilson S, Arch JR (1984) Prolonged beta-adrenoceptor stimulation increases the amount of GDP-binding protein in brown adipose tissue mitochondria. Life Sci 34(12):1111–1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Slovak Research and Development Agency (No. APVV-0088-10); and VEGA Grant (2/0067/14).

Author’s Contribution

The authors’ responsibilities were as follow: R.K., P.V., and J.U. conceived and designed the study; P.V., G.M., and J.U. contributed to optimization of methods, sample and data collection and data analysis; P.V. and M.L. wrote the manuscript; P.V., M.L., J.U., R.K. researched data and contributed to the discussion. All authors reviewed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vargovic.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Research Involving Human and Animal Participants

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Institute of Experimental Endocrinology at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargovic, P., Laukova, M., Ukropec, J. et al. Prior Repeated Stress Attenuates Cold-Induced Immunomodulation Associated with “Browning” in Mesenteric Fat of Rats. Cell Mol Neurobiol 38, 349–361 (2018). https://doi.org/10.1007/s10571-017-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0531-z

Keywords

Navigation