Skip to main content

Advertisement

Log in

Neuroprotectin D1 is Synthesized in the Cone Photoreceptor Cell Line 661W and Elicits Protection Against Light-Induced Stress

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA), an omega-3 fatty acid family member, is obtained by diet or synthesized from dietary essential omega-3 linolenic acid and delivered systemically to the choriocapillaris, from where it is taken up by the retinal pigment epithelium (RPE). DHA is then transported to the inner segments of photoreceptors, where it is incorporated in phospholipids during the biogenesis of outer segment disk and plasma membranes. As apical photoreceptor disks are gradually shed and phagocytized by the RPE, DHA is retrieved and recycled back to photoreceptor inner segments for reassembly into new disks. Under uncompensated oxidative stress, the docosanoid neuroprotectin D1 (NPD1), a potent mediator derived from DHA, is formed by the RPE and displays its bioactivity in an autocrine and paracrine fashion. The purpose of this study was to determine whether photoreceptors have the ability to synthesize NPD1, and whether or not this lipid mediator exerts bioactivity on these cells. For this purpose, 661W cells (mouse-derived photoreceptor cells) were used. First we asked whether these cells have the ability to form NPD1 by incubating cells with deuterium (d4)-labeled DHA exposed to dark and bright light treatments, followed by LC–MS/MS-based lipidomic analysis to identify and quantify d4-NPD1. The second question pertains to the potential bioactivity of these lipids. Therefore, cells were incubated with 9-cis-retinal in the presence of bright light that triggers cell damage and death. Following 9-cis-retinal loading, DHA, NPD1, or vehicle were added to the media and the 661W cells maintained either in darkness or under bright light. DHA and NPD1 were then quantified in cells and media. Regardless of lighting conditions, 661W cells acquired DHA from the media and synthesized 4–9 times as much d4-NPD1 under bright light treatment in the absence and presence of 9-cis-retinal compared to cells in darkness. Viability assays of 9-cis-retinal-treated cells demonstrated that 34 % of the cells survived without DHA or NPD1. However, after bright light exposure, DHA protected 23 % above control levels and NPD1 increased protection by 32 %. In conclusion, the photoreceptor cell line 661W has the capability to synthesize NPD1 from DHA when under stress, and, in turn, can be protected from stress-induced apoptosis by DHA or NPD1, indicating that photoreceptors effectively contribute to endogenous protective signaling mediated by NPD1 under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbaga MP, Brush RS, Mandal MN, Elliott MH, Al-Ubaidi MR, Anderson RE (2010) Role of Elovl4 protein in the biosynthesis of docosahexaenoic acid. Adv Exp Med Biol 664:233–242

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2007) Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture. Invest Ophthalmol Vis Sci 48(11):4866–4881

    Article  PubMed  Google Scholar 

  • Bazan NG (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81(2–3):205–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazan NG, Rodriguez de Turco EB (1994) Pharmacological manipulation of docosahexaenoic-phospholipid biosynthesis in photoreceptor cells: implications in retinal degeneration. J Ocul Pharmacol 10(3):591–604

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bok D (2005) Evidence for an inflammatory process in age-related macular degeneration gains new support. Proc Natl Acad Sci USA 102(20):7053–7054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai X, McGinnis JF (2012) Oxidative stress: the achilles’ heel of neurodegenerative diseases of the retina. Front Biosci 17:1976–1995

    Article  CAS  Google Scholar 

  • Chew EY, Clemons TE, Agrón E, Sperduto RD, Sangiovanni JP, Kurinij N, Davis MD, Age-Related Eye Disease Study Research Group (2013) Long-term effects of vitamins C and E, β-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology 120(8):1604–1611

    Article  PubMed Central  PubMed  Google Scholar 

  • Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–582

    Article  CAS  PubMed  Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  CAS  PubMed  Google Scholar 

  • de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355(14):1474–1485

    Article  PubMed  Google Scholar 

  • Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    Article  PubMed  Google Scholar 

  • Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  CAS  PubMed  Google Scholar 

  • Faghiri Z, Bazan NG (2010) PI3K/Akt and mTOR/p70S6K pathways mediate neuroprotectin D1-induced retinal pigment epithelial cell survival during oxidative stress-induced apoptosis. Exp Eye Res 90(6):718–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan J, Rohrer B, Moiseyev G, Ma JX, Crouch RK (2003) Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci USA 100(23):13662–13667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7):983–993

    Article  CAS  PubMed  Google Scholar 

  • Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102(20):7227–7232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  CAS  PubMed  Google Scholar 

  • Halapin NA, Bazan NG (2010) NPD1 induction of retinal pigment epithelial cell survival involves PI3K/Akt phosphorylation signaling. Neurochem Res 35:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Jarrett SG, Lin H, Godley BF, Boulton ME (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27:596–607

    Article  CAS  PubMed  Google Scholar 

  • Kanan Y, Moiseyev G, Agarwal N, Ma JX, Al-Ubaidi MR (2007) Light induces programmed cell death by activating multiple independent proteases in a cone photoreceptor cell line. Invest Ophthalmol Vis Sci 48:40–51

    Article  PubMed  Google Scholar 

  • Kanan Y, Kasus-Jacobi A, Moiseyev G, Sawyer K, Ma JX, Al-Ubaidi MR (2008) Retinoid processing in cone and Müller cell lines. Exp Eye Res 86:344–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lotery A, Trump D (2007) Progress in defining the molecular biology of age related macular degeneration. Hum Genet 122:219–236

    Article  PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia–reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–8496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC, Gordon WC, Jackson FE, Bazan NG (2007a) Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci USA 104:13158–13163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D, Bazan NG (2007b) Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA 104:13152–13157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak JZ (2013) Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep 65:288–304

    Article  CAS  PubMed  Google Scholar 

  • Ruddock KH, Burton GJ (1972) The organization of human colour vision at the central fovea. Vis Res 12:1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Rohrer B (2007) Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32:259–269

    Article  CAS  PubMed  Google Scholar 

  • Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22:1301–1308

    CAS  PubMed  Google Scholar 

  • Spencer KL, Hauser MA, Olson LM, Schmidt S, Scott WK, Gallins P, Agarwal A, Postel EA, Pericak-Vance MA, Haines JL (2007) Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration. Hum Mol Genet 16:1986–1992

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar PG, Kannan R, Yaung J, Spee CK, Ryan SJ, Hinton DR (2005) Protection from oxidative stress by methionine sulfoxide reductases in RPE cells. Biochem Biophys Res Commun 334:245–253

    Article  CAS  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Masuda A, Sun M, Centonze VE, Herman B (2004) Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 62:497–504

    Article  CAS  PubMed  Google Scholar 

  • Tan E, Ding XQ, Saadi A, Agarwal N, Naash MI, Al-Ubaidi MR (2004) Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest Ophthalmol Vis Sci 45:764–768

    Article  PubMed Central  PubMed  Google Scholar 

  • Veritti D, Sarao V, Lanzetta P (2012) Neovascular age-related macular degeneration. Ophthalmologica 227:11–20

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Anderson RE (1992) Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr Eye Res 11:783–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Oklahoma Center for the Advancement of Science and Technology (OCAST) to YK, Foundation Fighting Blindness (MRA), R01EY018137 (MRA), R01 EY005121 (NGB), P30 GM103340 (NGB), and the Research to Prevent Blindness. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH or any of its institutes.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Bazan or M. R. Al-Ubaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanan, Y., Gordon, W.C., Mukherjee, P.K. et al. Neuroprotectin D1 is Synthesized in the Cone Photoreceptor Cell Line 661W and Elicits Protection Against Light-Induced Stress. Cell Mol Neurobiol 35, 197–204 (2015). https://doi.org/10.1007/s10571-014-0111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0111-4

Keywords

Navigation