Skip to main content

Advertisement

Log in

Adenovirus-Mediated Coexpression of DCX and SPARC Radiosensitizes Human Malignant Glioma Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study is designed to examine the radiosensitizing effects of coexpression of doublecortin (DCX) and secreted protein and rich in cysteine (SPARC). Previously, we showed that downregulation of SPARC by small interfering RNA increased radioresistance of U-87MG glioma cells. Therefore, overexpression of SPARC might increase radiosensitivity of glioma cells. But SPARC has been shown to promote glioma cell invasion both in vitro and vivo. In order to radiosensitize glioma cells without stimulating invasion, we chose DCX, which is a well-characterized anti-tumor gene, to coexpress with SPARC. An adenovirus-mediated double gene expression system was constructed and applied to U251 and A172 glioma cell lines. Our data showed that coexpression of DCX and SPARC collaboratively diminished radioresistance of glioma cells, interfered with cell cycle turnover and increased irradiation-induced apoptosis. In addition, transwell assay revealed that coexpression was able to counteract the invasion-promoting effects of SPARC, and even inhibited intrinsic invasion, evidenced by less invading cells in double gene overexpressed group than that of control adenovirus-treated group. In conclusion, genetic engineering combining two or more genes might be a more effective method to overcome radioresistance of glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam R, Schultz CR, Golembieski WA, Poisson LM, Rempel SA (2013) PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma. Neuro Oncol 15(4):451–461

    Article  PubMed  CAS  Google Scholar 

  • Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19(8):816–827

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23(8):352–359

    Article  PubMed  CAS  Google Scholar 

  • Golembieski WA, Rempel SA (2002) cDNA array analysis of SPARC-modulated changes in glioma gene expression. J Neurooncol 60(3):213–226

    Article  PubMed  Google Scholar 

  • Jiang X, Xu Y, Zhang H, Yu J, Yang J, Liu F (2013) Effects of DCX and SPARC co-expression on the apoptosis of human glioma cells U-87MG induced by X-rays irradiation. J Radiat Res Radiat Process 31(1):10–15 (in Chinese)

    Google Scholar 

  • Liu H, Zhang H, Jiang X, Ma Y, Xu Y, Feng S, Liu F (2011) Knockdown of secreted protein acidic and rich in cysteine (SPARC) expression diminishes radiosensitivity of glioma cells. Cancer Biother Radiopharm 26(6):705–715

    Article  PubMed  CAS  Google Scholar 

  • Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294

    Article  PubMed  CAS  Google Scholar 

  • McClung HM, Thomas SL, Osenkowski P, Toth M, Menon P, Raz A, Fridman R, Rempel SA (2007) SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 419(2):172–177

    Article  PubMed  CAS  Google Scholar 

  • McClung HM, Golembieski WA, Schultz CR, Jankowski M, Schultz LR, Rempel SA (2012) Deletion of the SPARC acidic domain or EGF-like module reduces SPARC-induced migration and signaling through p38 MAPK/HSP27 in glioma. Carcinogenesis 33(2):275–284

    Article  PubMed  CAS  Google Scholar 

  • Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59(4):928–942

    Article  PubMed  Google Scholar 

  • Rich JN, Hans C, Jones B, Iversen ES, McLendon RE, Rasheed BK, Dobra A, Dressman HK, Bigner DD, Nevins JR, West M (2005) Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 65(10):4051–4058

    Article  PubMed  CAS  Google Scholar 

  • Santra M, Zhang X, Santra S, Jiang F, Chopp M (2006) Ectopic doublecortin gene expression suppresses the malignant phenotype in glioblastoma cells. Cancer Res 66(24):11726–11735

    Article  PubMed  CAS  Google Scholar 

  • Santra M, Santra S, Roberts C, Zhang RL, Chopp M (2009) Doublecortin induces mitotic microtubule catastrophe and inhibits glioma cell invasion. J Neurochem 108(1):231–245

    Article  PubMed  CAS  Google Scholar 

  • Santra M, Zheng X, Roberts C, Santra S, Lu M, Panda S, Jiang F, Chopp M (2010) Single doublecortin gene therapy significantly reduces glioma tumor volume. J Neurosci Res 88(2):304–314

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Lemke N, Ge S, Golembieski WA, Rempel SA (2002) Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Res 62(21):6270–6277

    PubMed  CAS  Google Scholar 

  • Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    Article  PubMed  Google Scholar 

  • Xie Y, Lv H, Sheng W, Miao J, Xiang J, Yang J (2011) Synergistic tumor suppression by adenovirus-mediated inhibitor of growth 4 and interleukin-24 gene cotransfer in hepatocarcinoma cells. Cancer Biother Radiopharm 26(6):681–695

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31270897, 81271682, 30870585) and Graduate Innovation Foundation of Medical College of Soochow University and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenju Liu.

Additional information

Yuanyuan Xu and Lei Yang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Yang, L., Jiang, X. et al. Adenovirus-Mediated Coexpression of DCX and SPARC Radiosensitizes Human Malignant Glioma Cells. Cell Mol Neurobiol 33, 965–971 (2013). https://doi.org/10.1007/s10571-013-9963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9963-2

Keywords

Navigation