Skip to main content

Advertisement

Log in

Neuroprotective Potential of Fasudil Mesylate in Brain Ischemia-Reperfusion Injury of Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cohen MM, Pettegrew JW, Kopp SJ, Minshew N, Glonek T (1984) P-31 nuclear magnetic resonance analysis of brain: normoxic and anoxic brain slices. Neurochem Res 9:785–801. doi:10.1007/BF00965666

    Article  PubMed  CAS  Google Scholar 

  • Davalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J (1999) Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European cooperative acute stroke study (ECASS) I. Stroke 30:2631–2636

    PubMed  CAS  Google Scholar 

  • Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM (1994) Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology 33:1425–1430. doi:10.1016/0028-3908(94)90045-0

    Article  PubMed  CAS  Google Scholar 

  • De AJ, Cardenas A, Moro MA, Leza JC, Lorenzo P, Lizasoain I (1999) Use of brain slices in the study of pathogenic role of inducible nitric oxide synthase in cerebral ischemia-reperfusion. Gen Pharmacol 32:577–581. doi:10.1016/S0306-3623(98)00280-8

    Article  Google Scholar 

  • Dobashi K, Araki S, Kubo K, Kawagoe R, Yamamoto Y, Shirahata A (2008) Hydroxymethylglutaryl-CoA reductase inhibitor inhibits induction of nitric oxide synthase in 3T3-L1 preadipocytes. Life Sci 82:85–90. doi:10.1016/j.lfs.2007.10.013

    Article  PubMed  CAS  Google Scholar 

  • Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC et al (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473–479. doi:10.1038/nm0502-473

    Article  PubMed  CAS  Google Scholar 

  • Hewett SJ, Csernansky CA, Choi DW (1994) Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13:487–494. doi:10.1016/0896-6273(94)90362-X

    Article  PubMed  CAS  Google Scholar 

  • Huang L, He Z, Guo L, Wang H (2008a) Improvement of cognitive deficit and neuronal damage in rats with chronic cerebral ischemia via relative long-term inhibition of rho-kinase. Cell Mol Neurobiol 28:757–768. doi:10.1007/s10571-007-9157-x

    Article  PubMed  Google Scholar 

  • Huang X, Li Q, Zhang Y, Lu Q, Guo L, Huang L et al (2008b) Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices. Cell Mol Neurobiol 28:559–568. doi:10.1007/s10571-007-9184-7

    Article  PubMed  Google Scholar 

  • Johansson R, Persson K (2004) Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 286:R642–R648. doi:10.1152/ajpregu.00443.2003

    PubMed  CAS  Google Scholar 

  • Kadowaki S, Chikumi H, Yamamoto H, Yoneda K, Yamasaki A, Sato K et al (2004) Down-regulation of inducible nitric oxide synthase by lysophosphatidic acid in human respiratory epithelial cells. Mol Cell Biochem 262:51–59. doi:10.1023/B:MCBI.0000038215.89821.7f

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Huang L, Liu D, Wang W, Chen W, Guo L (2007) Effects of Ethanesulfonic fasudil on cerebral vasospasm in dogs. Chin J Hosp Pharm 27:746–749

    Google Scholar 

  • Liao Y, Wang R, Tang XC (2004) Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta Pharmacol Sin 25:1590–1596

    PubMed  CAS  Google Scholar 

  • Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D (2007) Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience 146:617–629. doi:10.1016/j.neuroscience.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    PubMed  CAS  Google Scholar 

  • Macklis JD, Madison RD (1990) Progressive incorporation of propidium iodide in cultured mouse neurons correlates with declining electrophysiological status: a fluorescence scale of membrane integrity. J Neurosci Methods 31:43–46. doi:10.1016/0165-0270(90)90007-3

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee PK, Ahamed KF, Kumar V, Mukherjee K, Houghton PJ (2007) Protective effect of biflavones from Araucaria bidwillii Hook in rat cerebral ischemia/reperfusion induced oxidative stress. Behav Brain Res 178:221–228. doi:10.1016/j.bbr.2006.12.025

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE (2004) Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 24:1046–1056. doi:10.1097/01.WCB.0000130867.32663.90

    Article  PubMed  CAS  Google Scholar 

  • Pellmar TC (1995) Use of brain slices in the study of free-radical actions. J Neurosci Methods 59:93–98. doi:10.1016/0165-0270(94)00198-P

    Article  PubMed  CAS  Google Scholar 

  • Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T et al (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36:2251–2257. doi:10.1161/01.STR.0000181077.84981.11

    Article  PubMed  CAS  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    PubMed  CAS  Google Scholar 

  • Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541. doi:10.1038/35035131

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293

    PubMed  CAS  Google Scholar 

  • Vaughan CJ, Delanty N (1999) Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 30:1969–1973

    PubMed  CAS  Google Scholar 

  • Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S et al (2007) Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 1154:215–224. doi:10.1016/j.brainres.2007.04.013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Foundation of Nature and Science of China (No. 30772559).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Xing Wang or Lian-Jun Guo.

Additional information

Xian-Ju Huang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Huang, XJ., He, W. et al. Neuroprotective Potential of Fasudil Mesylate in Brain Ischemia-Reperfusion Injury of Rats. Cell Mol Neurobiol 29, 169–180 (2009). https://doi.org/10.1007/s10571-008-9308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9308-8

Keywords

Navigation