Skip to main content
Log in

Dynamical capture in the Pluto–Charon system

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper explores the possibility that the progenitors of the small satellites of Pluto got captured in the Pluto–Charon system from the massive heliocentric planetesimal disk in which Pluto was originally embedded into. We find that, if the dynamical excitation of the disk is small, temporary capture in the Pluto–Charon system can occur with non- negligible probability, due to the dynamical perturbations exerted by the binary nature of the Pluto–Charon pair. However, the captured objects remain on very elliptic orbits and the typical capture time is only ~ 100 years. In order to explain the origin of the small satellites of Pluto, we conjecture that some of these objects got disrupted during their Pluto-bound phase by a collision with a planetesimal of the disk. This could have generated a debris disk, which damped under internal collisional evolution, until turning itself into an accretional disk that could form small satellites on circular orbits, co-planar with Charon. Unfortunately, we find that objects large enough to carry a sufficient amount of mass to generate the small satellites of Pluto have collisional lifetimes orders of magnitude longer than the capture time. Thus, this scenario cannot explain the origin of the small satellites of Pluto, which remains elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, W., Asphaug, E.: Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). doi:10.1006/icar.1999.6204. arXiv:astro-ph/9907117

    Google Scholar 

  • Buie, M.W., Grundy, W.M., Young, E.F., Young, L.A., Stern, S.A.: Orbits and photometry of Plutoś satellites: Charon, S/2005 P1, and S/2005 P2. AJ 132, 290–298 (2006). doi:10.1086/504422. arXiv:astro-ph/0512491

  • Canup R.M.: A giant impact origin of Pluto–Charon. Science 307, 546–550 (2005). doi:10.1126/science.1106818

    Article  ADS  Google Scholar 

  • Canup R.M.: On a giant impact origin of Charon, Nix, and Hydra. AJ 141, 35 (2011). doi:10.1088/0004-6256/141/2/35

    Article  ADS  Google Scholar 

  • Cheng, W.H.: Tidal Evolution of Pluto–Charon and the Implications for the Origin of the Satellites Nix and Hydra. Master’s Thesis, The University of Hong Kong (2011)

  • Gomes R., Levison H.F., Tsiganis K., Morbidelli A.: Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435, 466–469 (2005). doi:10.1038/nature03676

    Article  ADS  Google Scholar 

  • Leinhardt, Z.M., Stewart, S.T.: Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009). doi:10.1016/j.icarus.2008.09.013, 0811.0175

    Google Scholar 

  • Levison H.F., Duncan M.J.: The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994). doi:10.1006/icar.1994.1039

    Article  ADS  Google Scholar 

  • Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., Tsiganis K.: Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008). doi:10.1016/j.icarus.2007.11.035, 0712.0553

  • Levison H.F., Bottke W.F., Gounelle M., Morbidelli A., Nesvorný D., Tsiganis K.: Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009). doi:10.1038/nature08094

    Article  ADS  Google Scholar 

  • Levison H.F., Morbidelli A., Tsiganis K., Nesvorný D., Gomes R.: Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. AJ 142, 152 (2011). doi:10.1088/0004-6256/142/5/152

    Article  ADS  Google Scholar 

  • Lithwick, Y., Wu, Y.: On the Origin of Pluto’s Minor Moons, Nix and Hydra. ArXiv e-prints 0802.2951 (2008)

  • Malhotra R.: The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993). doi:10.1038/365819a0

    Article  ADS  Google Scholar 

  • McKinnon W.B.: On the origin of the Pluto–Charon binary. ApJ 344, L41–L44 (1989). doi:10.1086/185526

    Article  ADS  Google Scholar 

  • Morbidelli, A., Levison, H.F., Gomes, R.: The Dynamical Structure of the Kuiper Belt and Its Primordial Origin, pp. 275–292. University of Arizona Press, Tucson (2008)

  • Morbidelli A., Levison H.F., Bottke W.F., Dones L., Nesvorný D.: Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans. Icarus 202, 310–315 (2009). doi:10.1016/j.icarus.2009.02.033

    Article  ADS  Google Scholar 

  • Nesvorný, D., Youdin, A.N., Richardson, D.C.: Formation of Kuiper belt binaries by gravitational collapse. AJ 140, 785–793 (2010). doi:10.1088/0004-6256/140/3/785, 1007.1465

  • Peale, S.J., Cheng, W.H., Lee, M.H.: The evolution of the Pluto system. In: EPSC-DPS Joint Meeting 2011, p. 665 (2011)

  • Stern S.A., Weaver H.A., Steffl A.J., Mutchler M.J., Merline W.J., Buie M.W., Young E.F., Young L.A., Spencer J.R.: A giant impact origin for Pluto’s small moons and satellite multiplicity in the Kuiper belt. Nature 439, 946–948 (2006). doi:10.1038/nature04548

    Article  ADS  Google Scholar 

  • Tholen, D.J., Buie, M.W.: Bulk Properties of Pluto and Charon, p. 193. University of Arizona Press, Tucson (1997)

  • Tholen, D.J., Buie, M.W., Grundy, W.M., Elliott, G.T.: Masses of Nix and Hydra. AJ 135, 777–784 (2008). doi:10.1088/0004-6256/135/3/777, 0712.1261

  • Valsecchi A., Manara G.B.: Dynamics of comets in the outer planetary region. II. Enhanced planetary masses and orbital evolutionary paths. A&A 323, 986–998 (1997)

    ADS  Google Scholar 

  • Ward W.R., Canup R.M.: Forced resonant migration of Pluto’s outer satellites by Charon. Science 313, 1107–1109 (2006). doi:10.1126/science.1127293

    Article  MathSciNet  ADS  Google Scholar 

  • Weaver, H.A., Stern, S.A., Mutchler, M.J., Steffl, A.J., Buie, M.W., Merline, W.J., et al.: Discovery of two new satellites of Pluto. Nature 439, 943–945 (2006). doi:10.1038/nature04547. arXiv:astro-ph/0601018

    Google Scholar 

  • Wetherill G.W.: Collisions in the asteroid belt. J. Geophys. Res. 72, 2429 (1967). doi:10.1029/JZ072i009p02429

    Article  ADS  Google Scholar 

  • Wetherill G.W., Stewart G.R.: Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190 (1993). doi:10.1006/icar.1993.1166

    Article  ADS  Google Scholar 

  • Youdin, A.N., Kratter, K.M., Kenyon, S.J.: Circumbinary Chaos: Using Pluto’s Newest Moon to Constrain the Masses of Nix & Hydra. ArXiv e-prints 1205.5273 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Pires dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires dos Santos, P.M., Morbidelli, A. & Nesvorný, D. Dynamical capture in the Pluto–Charon system. Celest Mech Dyn Astr 114, 341–352 (2012). https://doi.org/10.1007/s10569-012-9442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9442-y

Keywords

Navigation