Skip to main content
Log in

Selective Catalytic Reduction of N2O by CO over Fe-Beta Zeolites Catalysts: Influence of Iron Species Distribution

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this paper, selective catalytic reduction (SCR) of N2O by CO was investigated over Fe-beta zeolites catalysts. The catalysts were prepared by wet ion-exchange (IE), impregnation (IM) and solid state ion-exchange (SSIE) methods. These catalysts were characterized by XRD, UV–vis DR spectroscopy, H2-TPR, TPD and in-situ DRIFTS. At 350 °C, more than 90% N2O conversion could be obtained over the Fe-beta-IE catalyst. The activity for N2O removal of Fe-beta-IE was higher than Fe-beta-IM and Fe-beta-SSIE catalysts. The UV–vis spectra showed that 84.2% of isolated Fe(III) ion appeared on Fe-beta-IE catalyst. It indicated that the isolated Fe(III) ions might be considered as the active sites for N2O reduction. Besides, in the presence of H2O, the activities in CO-SCR for N2O removal over Fe-beta catalysts were inhibited, which might be due to the hydroxylation deactivation of iron species and excess accumulation of carbonates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wallington TJ, Wiesen P (2014) Atmos Environ 94:258–263

    CAS  Google Scholar 

  2. Shin Y, Jung Y, Cho CP, Pyo YD, Jang J, Kim G, Kim TM (2020) Chem Eng J 381:122751

    CAS  Google Scholar 

  3. Armesto L, Boerrigter H, Bahillo A, Otero J (2003) Fuel 82:1845–1850

    CAS  Google Scholar 

  4. Pérez-Ramı́rez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Appl Catal B Environ 44:117–151

    Google Scholar 

  5. Tabor E, Sádovská G, Bernauer M, Sazama P, Nováková J, Fíla V, Kmječ T, Kohout J, Závěta K, Sobalík Z (2019) Appl Catal B Environ 240:358–366

    CAS  Google Scholar 

  6. Giecko G, Borowiecki T, Gac W, Kruk J (2008) Catal Today 137:403–409

    CAS  Google Scholar 

  7. Coq B, Mauvezin M, Delahay G, Kieger S (2000) J Catal 195:298–303

    CAS  Google Scholar 

  8. Liu Z, He F, Ma L, Peng S (2016) Catal Surv Asia 20:121–132

    CAS  Google Scholar 

  9. Sobolev VI, Koltunov KY (2011) J Mol Catal A Chem 347:22–27

    CAS  Google Scholar 

  10. Avdeev VI, Bedilo AF (2018) Chem Phys Lett 695:222–227

    CAS  Google Scholar 

  11. Zhang X, Shen Q, He C, Ma C, Cheng J, Hao Z (2012) Catal Commun 18:151–155

    Google Scholar 

  12. Debbagh MN, Bueno-López A, Lecea CSMD, Pérez-Ramírez J (2007) Appl Catal A Gen 327:66–72

    CAS  Google Scholar 

  13. Shen Q, Li L, He C, Tian H, Hao Z, Xu ZP (2009) Appl Catal B Environ 91:262–268

    CAS  Google Scholar 

  14. Delahay G, Mauvezin M, Coq B, Kieger S (2001) Catal Commun 3:385–389

    Google Scholar 

  15. Dai C, Lei Z, Wang Y, Zhang R, Chen B (2013) Microporous Mesoporous Mat 167:254–266

    CAS  Google Scholar 

  16. Konsolakis M, Yentekakis IV, Pekridis G, Kaklidis N, Psarras AC, Marnellos GE (2013) Appl Catal B Environ 138–139:191–198

    Google Scholar 

  17. Parres-Esclapez S, Illán-Gómez MJ, de Lecea CS, Bueno-López A (2010) Appl Catal B Environ 96:370–378

    CAS  Google Scholar 

  18. Tanaka S, Yuzaki K, Ito S, Kameoka S, Kunimori K (2001) J Catal 200:203–208

    CAS  Google Scholar 

  19. You Y, Chang H, Ma L, Guo L, Qin X, Li J, Li J (2018) Chem Eng J 347:184–192

    CAS  Google Scholar 

  20. Iwanek E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2011) Appl Catal B Environ 106:416–422

    CAS  Google Scholar 

  21. Zabilskiy M, Djinović P, Tchernychova E, Pintar A (2016) Appl Catal B Environ 197:146–158

    CAS  Google Scholar 

  22. Fellah MF, Onal I (2008) Catal Today 137:410–417

    CAS  Google Scholar 

  23. Rutkowska M, Piwowarska Z, Micek E, Chmielarz L (2015) Microporous Mesoporous Mat 209:54–65

    CAS  Google Scholar 

  24. Granger P (2004) J Catal 223:142–151

    CAS  Google Scholar 

  25. Perezramirez J (2004) J Catal 223:13–27

    CAS  Google Scholar 

  26. Yang G, Guan J, Zhou L, Han X, Bao X (2010) Catal Surv Asia 14:85–94

    CAS  Google Scholar 

  27. Sklenak S, Andrikopoulos PC, Boekfa B, Jansang B, Nováková J, Benco L, Bucko T, Hafner J, Dědeček J, Sobalík Z (2010) J Catal 272:262–274

    CAS  Google Scholar 

  28. Pirngruber G, Roy P, Prins R (2007) J Catal 246:147–157

    CAS  Google Scholar 

  29. Guesmi H, Berthomieu D, Kiwi-Minsker L (2010) Catal Commun 11:1026–1031

    CAS  Google Scholar 

  30. Pieterse J (2004) Appl Catal B Environ 51:215–228

    CAS  Google Scholar 

  31. Zhang T, Qin X, Peng Y, Wang C, Chang H, Chen J, Li J (2019) Catal Commun 128:105706

    CAS  Google Scholar 

  32. Rutkowska M, Chmielarz L, Macina D, Piwowarska Z, Dudek B, Adamski A, Witkowski S, Sojka Z, Obalová L, Van Oers CJ, Cool P (2014) Appl Catal B Environ 146:112–122

    CAS  Google Scholar 

  33. Liu J, Liu J, Zhao Z, Duan Z, Wei Y, Song W, Sun Y (2018) Catal Surv Asia 22:181–194

    CAS  Google Scholar 

  34. Melián-Cabrera I, van Eck ERH, Espinosa S, Siles-Quesada S, Falco L, Kentgens APM, Kapteijn F, Moulijn JA (2017) Appl Catal B Environ 203:218–226

    Google Scholar 

  35. Ryu T, Hong SB (2020) Appl Catal B Environ 266:118622

    CAS  Google Scholar 

  36. Zhang X, Ma C, Cheng X, Wang Z (2017) Int J Hydrog Energy 42:7077–7088

    CAS  Google Scholar 

  37. Zhu N, Lian Z, Zhang Y, Shan W, He H (2019) Chin Chem Lett 30:867–870

    CAS  Google Scholar 

  38. Li G, Pidko EA, Filot IAW, van Santen RA, Li C, Hensen EJM (2013) J Catal 308:386–397

    CAS  Google Scholar 

  39. You Y, Chen S, Li J, Zeng J, Chang H, Ma L, Li J (2020) J Hazard Mater 383:121117

    CAS  PubMed  Google Scholar 

  40. Wang A, Wang Y, Walter ED, Kukkadapu RK, Guo Y, Lu G, Weber RS, Wang Y, Peden CHF, Gao F (2018) J Catal 358:199–210

    CAS  Google Scholar 

  41. Pai MR, Banerjee AM, Kartha K, Pai RV, Kamble VS, Bharadwaj SR (2010) J Phys Chem B 114:6943–6953

    CAS  PubMed  Google Scholar 

  42. Berrier E, Ovsitser O, Kondratenko E, Schwidder M, Grunert W, Bruckner A (2007) J Catal 249:67–78

    CAS  Google Scholar 

  43. Fu CM, Korchak VN, Hall WK (1981) J Catal 68:166–171

    CAS  Google Scholar 

  44. Yu Y, Zhang J, Chen C, He C, Miao J, Li H, Chen J (2020) J Environ Sci China 91:237–245

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51778619, 51938014), and National Engineering Laboratory for Mobile Source Emission Control Technology (NELMS2018A12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhen Chang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wang, Y., Diao, F. et al. Selective Catalytic Reduction of N2O by CO over Fe-Beta Zeolites Catalysts: Influence of Iron Species Distribution. Catal Surv Asia 25, 58–67 (2021). https://doi.org/10.1007/s10563-020-09313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09313-5

Keywords

Navigation