Skip to main content
Log in

Amorphous Cr/SiO2 Materials Hydrothermally Treated: Liquid Phase Cyclohexanol Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Amorphous Cr–SiO2 materials were synthesized by the sol–gel method and hydrothermally treated at temperatures between 150 and 220 °C. These materials were used as catalysts for cyclohexanol oxidation with H2O2 as oxidant and CH3CN as a solvent. They were responsible for the decomposition of H2O2, which triggers, by a free radical mechanism in the homogeneous phase, the oxidation or degradation of the hydrocarbon chain. Metal leaching causes a drop in catalytic activity when the material is recycled. Studies on the hydrothermal treatment effect on the leaching process have demonstrated that the higher the hydrothermal treatment temperature, the higher the metal/support interaction, leading to a diminution of the leaching process. Under mild reaction conditions, and using TBHP as oxidant, leaching was reduced, and improvements were obtained on the selectivity towards the formation of cyclohexanone. The use of these catalysts in the oxidation of verbenol, an allylic alcohol, showed a significant increase in the substrate conversion and in the selectivity to carbonyl derivative formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bellifa A, Choukchou-Braham A, Kappenstein C, Pirault-Roy L (2014) RSC Adv 4:22374

    Article  CAS  Google Scholar 

  2. Hagen J (2015) Homogeneously catalyzed industrial processes, Wiley, New Jersey

    Book  Google Scholar 

  3. Lancaster M (2007) Principles of sustainable and green chemistry, Blackwell Science Ltd, New Jersey

    Google Scholar 

  4. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL (2001) Appl Catal A 211:1

    Article  CAS  Google Scholar 

  5. Taghavimoghaddam J, Knowles GP, Chaffee AL (2012) J Mol Catal A 358:79

    Article  CAS  Google Scholar 

  6. Sakthivel A, Selvam P (2002) J Catal 211:134

    Article  CAS  Google Scholar 

  7. Tangale NP, Niphadkar PS, Deshpande SS, Joshi PN (2013) Appl Catal A 467:421

    Article  CAS  Google Scholar 

  8. Jevtic R, Ramachandran PA, Dudukovic MP (2009) Ind Eng Chem Res 48:7986

    Article  CAS  Google Scholar 

  9. Rodionova LI, Smirnov AV, Borisova NE, Khrustalev VN, Moiseeva AA, Grünert W (2012) Inorg Chim Acta 392:221

    Article  CAS  Google Scholar 

  10. Adam F, Retnam P, Iqbal A (2009) Appl Catal A 357:93

    Article  CAS  Google Scholar 

  11. Schuchardt U, Carvalho WA, Spinacé EV (1993) Synlett 1993, 713

    Article  Google Scholar 

  12. Fridman VZ, Davydov AA (2000) J Catal 195:20

    Article  CAS  Google Scholar 

  13. Romero A, Santos A, Escrig D, Simón (2011) E. Appl Catal A 392:19

    Article  CAS  Google Scholar 

  14. Sridevi B, Nagaiah P, Padmasri AH, David Raju B, Rama Rao KS (2017) J Chem Sci 129:601

    Article  CAS  Google Scholar 

  15. Wang Z, Liu X, Rooney DW, Hu P (2015) Surf Sci 640:181

    Article  CAS  Google Scholar 

  16. da Cruz RS, de Souza e Silva JM, Arnold U, Schuchardt U (2001) J Mol Catal A 171:251

    Article  Google Scholar 

  17. Bérubé F, Khadraoui A, Florek J, Kaliaguine S, Kleitz F (2015) J Coll Interface Sci 449:102

    Article  CAS  Google Scholar 

  18. Samanta S, Mal NK, Bhaumik A (2005) J Mol Catal A 236:7

    Article  CAS  Google Scholar 

  19. Parentis ML, Bonini NA, Gonzo EE (2002) React Kinet Catal Lett 76:243

    Article  CAS  Google Scholar 

  20. Sakthivel A, Dapurkar SE, Selvam P (2003) Appl Catal A 246:283

    Article  CAS  Google Scholar 

  21. Shylesh S, Samuel PP, Singh AP (2007) Appl Catal A 318:128

    Article  CAS  Google Scholar 

  22. Shylesh S, Srilakshmi C, Singh AP, Anderson BG (2007) Microporous Mesoporous Mater 99:334

    Article  CAS  Google Scholar 

  23. Lempers HEB, Sheldon RA (1998) J Catal 175:62

    Article  CAS  Google Scholar 

  24. Laha SC, Gläser R (2007) Microporous Mesoporous Mater 99:159

    Article  CAS  Google Scholar 

  25. Cuesta Zapata PM, Nazzarro MS, Gonzo EE, Parentis ML, Bonini NA (2016) Catal Today 259:39

    Article  CAS  Google Scholar 

  26. Cuesta Zapata PM, Nazzarro MS, Parentis ML, Gonzo EE, Bonini NA (2013) Chem Eng Sci 101:374

    Article  CAS  Google Scholar 

  27. Cuesta Zapata PM, Parentis ML, Gonzo EE, Bonini NA (2013) Appl Catal A 457:26

    Article  CAS  Google Scholar 

  28. Delley MF, Praveen CS, Borosy AP, Núñez-Zarur F, Comas-Vives A, Copéret C (2017) J Catal 354:223

    Article  CAS  Google Scholar 

  29. Demmelmaier CA, White RE, van Bokhoven JA, Scott SL (2009) J Catal 262:44

    Article  CAS  Google Scholar 

  30. Floryan L, Borosy AP, Núñez-Zarur F, Comas-Vives A, Copéret C (2017) J Catal 346:50

    Article  CAS  Google Scholar 

  31. Huheey JE, Keiter EA, Keiter RL, Medhi OK (2006) Principles of Structure and Reactivity, Pearson Education, New Delhi

    Google Scholar 

  32. Vafaeezadeh M, Hashemi MM, Shakourian-Fard M (2012) Catal Commun 26:54

    Article  CAS  Google Scholar 

  33. Vafaeezadeh M, Mahmoodi Hashemi M (2014) Catal Commun 43:169

    Article  CAS  Google Scholar 

  34. Won T-J, Lee Y-I (2006) Microchem J 82:73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices and the financial support of INIQUI-CONICET and CIUNSa.

Funding

Funding was provided by Consejo de Investigación, Universidad Nacional de Salta and Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto A. Bonini.

Ethics declarations

Conflict of interest

Authors declare they have not any ethical conflict of interest related to the publication and its content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, J.F., Cuesta Zapata, P.M., Gonzo, E.E. et al. Amorphous Cr/SiO2 Materials Hydrothermally Treated: Liquid Phase Cyclohexanol Oxidation. Catal Lett 148, 2082–2094 (2018). https://doi.org/10.1007/s10562-018-2422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2422-4

Keywords

Navigation