Skip to main content
Log in

A Statistical Approach to Optimize Cold Active β-Galactosidase Production by an Arctic Sediment Pscychrotrophic Bacteria, Enterobacter ludwigii (MCC 3423) in Cheese Whey

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cold active β-galactosidases which catalyze lactose hydrolysis and transglycosylation reactions at low temperature make them highly potential biocatalyst in biotechnology, pharmaceutical and food processing industries. Moreover, an interest towards the utilization of diary industrial waste, whey and its constituents, for manufacturing a wide range of valuable products at reliable cost is increasing among researchers in order to facilitate its wider commercial use. In the present study, the fermentation parameters for the maximum production of cold active β-galactosidase from a psychrotrophic bacterium, Enterobacter ludwigii in cheese whey was optimized by exploring statistical methods, Plackett-Burman design (PBD) and central composite design (CCD). Three most significant factors viz, pH, whey and tryptone out of 11 were selected by PBD and were further optimized by response surface methodology using CCD. The optimal levels of pH, whey and tryptone were indicated as 7.3, 82 (v/v) % and 3.84 g% respectively. An overall 3.6-fold increase in cold active β-galactosidase production (34.37 U/mL) was achieved in optimized medium compared to the yield from unoptimized medium. The quadratic regression model was proven to be adequate (p = 0.0001, R 2 = 0.9880, CV = 7.96%) and the response (cold active β-galactosidase production) obtained on validation coincident with the predicted value.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wierzbicka-Woś A, Cieśliński H, Wanarska M et al (2011) A novel cold-active β-d-galactosidase from the Paracoccus sp. 32d - gene cloning, purification and characterization. Microb Cell Fact 10:108–120

    Article  Google Scholar 

  2. Harju M, Kallioinen H, Tossavainen O (2012) Lactose hydrolysis and other conversions in dairy products: technological aspects. Int Dairy J 22(2):104–109

    Article  CAS  Google Scholar 

  3. Pawlak-Szukalska A, Wanarska M, Popinigis AT et al (2014) A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB—gene cloning, purification and characterization. Process Biochem 49(12):2122–2133

    Article  CAS  Google Scholar 

  4. Hoyoux A, Jennes I, Dubois P et al (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis.Appl Environ Microbiol 67(4):1529–1535

    Article  CAS  Google Scholar 

  5. Fernandes S, Geueke B, Delgado O et al (2002) β-Galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321

    Article  CAS  Google Scholar 

  6. Nakagawa T, Fujimoto Y, Ikehata R et al (2006) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72:720–725

    Article  CAS  Google Scholar 

  7. Rastall RA, Maitin V (2002) Prebiotics and synbiotics: towards the next generation. Curr Opin Biotechnol 13(5):490–496

    Article  CAS  Google Scholar 

  8. Splechtna B, Nguyen TH, Steinbock M et al (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri.J Agric Food Chem 54(14):4999–5006

    Article  CAS  Google Scholar 

  9. Białkowska AM, Cieśliński H, Nowakowska KM et al (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835

    Article  Google Scholar 

  10. Schmidt M, Stougaard P (2010) Identification, cloning and expression of a cold-active β-galactosidase from a novel Arctic bacterium, Alkalilactibacillus ikkense. Environ Technol 31:1107–1114

    Article  CAS  Google Scholar 

  11. Alikkunju AP, Sainjan N, Silvester R et al (2016) Screening and characterization of cold-active β-galactosidase producing psychrotrophic Enterobacter ludwigii from the sediments of Arctic Fjord. Appl Biochem Biotechnol 180(3):477–490

    Article  CAS  Google Scholar 

  12. Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  13. Smithers GW (2008) Whey and whey proteins—from gutter to gold. Int Diary J 18:695–704

    Article  CAS  Google Scholar 

  14. Illanes A (2011) Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 14:1–28

    Article  Google Scholar 

  15. Das P, Mukherjee S, Sen R (2009) Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour Technol 100:1015–1019

    Article  CAS  Google Scholar 

  16. Venetsaneas N, Antonopoulou G, Stamatelatou K et al (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100(15):3713–3717

    Article  CAS  Google Scholar 

  17. Geiger B, Nguyen H, Wenig S et al (2016) From by-product to valuable components : efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J 116:45–53

    Article  CAS  Google Scholar 

  18. Gao H, Liu M, Liu J et al (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100(17):4012–4016

    Article  CAS  Google Scholar 

  19. Xiong Y, Liu J, Song H et al (2004) Enhanced production of extracellular ribonuclease from Aspergillus niger by optimization of culture conditions using response surface methodology. Biochem Eng J 21:27–32

    Article  CAS  Google Scholar 

  20. Deepak V, Kalishwaralal K, Ramkumarpandian S et al (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour Technol 99:8170–8174

    Article  CAS  Google Scholar 

  21. Singh V, Haque S, Niwas R et al (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol. https://doi.org/10.3389/fmicb.2016.02087

    Google Scholar 

  22. Keskin Gundogdu T, Deniz I, Caliskan G et al (2016) Experimental design methods for bioengineering applications. Crit Rev Biotechnol 36:368–388

    Article  CAS  Google Scholar 

  23. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology. Process Biochem 39:1057–1062

    Article  CAS  Google Scholar 

  24. Basha M, Rajasimman M (2015) Fermentative production and optimization of mevastatin in submerged fermentation using Aspergillus terreus. Biotechnol Rep 6:124–128

    Article  Google Scholar 

  25. Almeida DG, Soares da Silva RCF, Luna JM et al (2017) Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Front Microbiol 8(157):1–13

    Google Scholar 

  26. Liu J, Xing J, Chang T et al (2005) Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem 40:2757–2762

    Article  CAS  Google Scholar 

  27. Thys RCS, Guzzon SO, Cladera-olivera F et al (2006) Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem 41:67–73

    Article  CAS  Google Scholar 

  28. Patil MD, Shinde KD, Patel G et al (2016) Use of response surface method for maximizing the production of arginine deiminase by Pseudomonas putida. Biotechnol Rep 10:29–37

    Article  Google Scholar 

  29. Rosmine E, Sainjan NC, Silvester R et al (2017) Statistical optimisation of xylanase production by estuarine Streptomyces sp. and its application in clarification of fruit juice. J Genet Eng Biotechnol. https://doi.org/10.1016/j.jgeb.2017.06.001

    Google Scholar 

  30. Hussain F, Kamal S, Rehman S et al (2017) Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus substilis sp. Catal Lett 147(5):1204–1213

    Article  CAS  Google Scholar 

  31. AOAC (2006) Official methods of analysis. The association of official analytical chemists, 18th edn. AOAC, Arlington

    Google Scholar 

  32. Pearson D (1976) Chemical analysis of foods, 7th edn. Church Hill Livingstone, London

    Google Scholar 

  33. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  34. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York, pp. 352–355

    Google Scholar 

  35. Cruz R, Cruz VDA, Belot JG et al (1999) Production of transgalactosylated oligosaccharides (TOS) by galactosyltransferase activity from Penicillium simplicissimum. Bioresour Technol 70:165–171

    Article  CAS  Google Scholar 

  36. Zadow JG (1994) Utilization of milk components: whey. In: Robinson RK (ed) Modern dairy technology, advances in milk processing, vol 1, 2nd edn. Springer, Boston, p 504

    Google Scholar 

  37. Khan H, Flint SH, Yu P (2013) Development of a chemically defined medium for the production of enterolysin A from Enterococcus faecalis. J Appl Microbiol 114:1092–1102

    Article  CAS  Google Scholar 

  38. Dalev PG (1994) Utilization of waste whey as a protein source for production of iron proteinate: an antianemic preparation. Bioresour Technol 48:75–77

    Article  CAS  Google Scholar 

  39. Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47(3):195–203

    Article  CAS  Google Scholar 

  40. Saddoud A, Hassaı I, Sayadi S (2007) Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour Technol 98:2102–2108

    Article  CAS  Google Scholar 

  41. Daverey A, Pakshirajan K (2009) Production, characterization and properties of sophorolipids from the Yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674

    Article  CAS  Google Scholar 

  42. Raganati F, Olivieri G, Procentese A, Russo ME, Salatino P, Marzocchella A (2013) Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresour Technol 138:259–265

    Article  CAS  Google Scholar 

  43. Ghosh M, Pulicherla KK, Rekha VPB et al (2013) Optimisation of process conditions for lactose hydrolysis in paneer whey with cold-active β-galactosidase from psychrophilic Thalassospira frigidphilosprofundus. Int J Dairy Technol 66(2):256–263

    Article  CAS  Google Scholar 

  44. Bansal S, Oberoi HS, Dhillon GS et al (2008) Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian J Microbiol 48:337–341

    Article  CAS  Google Scholar 

  45. Siso MIG (1994) β-Galactosidase production by Kluyveromyces lactis on milk whey: batch versus fed-batch cultures. Process Biochem 29:565–568

    Article  Google Scholar 

  46. Raol GG, Raol BV, Prajapati VS et al (2015) Utilization of agro-industrial waste for β-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech 5:411–421

    Article  Google Scholar 

  47. Myers RH, Montogomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  48. Muralidhar RV, Chirumamila RR, Marchant R et al (2001) A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 9:17–23

    Article  CAS  Google Scholar 

  49. Garg G, Mahajan R, Kaur A et al (2011) Xylanase production using agro-residue in solidstate fermentation from Bacillus pumilus ASH for bio-delignification of wheat straw pulp. Biodegradation 22:1143–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to UGC-BSR, India for funding the research work (UGC Grant No. F.No. 25-1/2014-15(BSR)/5-24/2007/(BSR). Authors are also thankful to the Department of Marine Biology, Microbiology and Biochemistry and Sophisticated Testing and Instrumentation Centre (STIC) at Cochin University of Science and Technology (CUSAT) and National Centre for Antarctic and Ocean Research (NCAOR) for providing the facilities to carry out the research. Authors acknowledge Dr. C. K. Radhakrishnan and K. T. Thomas for their valuable suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesa P. Alikunju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikunju, A.P., Joy, S., Rahiman, M. et al. A Statistical Approach to Optimize Cold Active β-Galactosidase Production by an Arctic Sediment Pscychrotrophic Bacteria, Enterobacter ludwigii (MCC 3423) in Cheese Whey. Catal Lett 148, 712–724 (2018). https://doi.org/10.1007/s10562-017-2257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2257-4

Keywords

Navigation