Skip to main content
Log in

Reactive and Non-reactive Interactions of Thiophene with WS2 Fullerene-like Nanoparticles: An Ultra-high Vacuum Surface Chemistry Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The adsorption kinetics of thiophene on WS2 nanoparticles with fullerene-like (onion-like) structure has been studied at ultra-high vacuum conditions by sample temperature ramping techniques. At low temperatures, thiophene adsorbs molecularly. The formation of H2S and alkanes is evident at greater temperatures on fully sulfided as well as reduced and oxidized WS2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Alkane formation rates were detectable only above 600 K. At these large surface temperatures the coverage of the reactants on the surface is very small which limits the product formation rates. This problem can be overcome by increasing the gas pressure of the reactants in a high-pressure chemical reactor.

References

  1. Friend CM, Chen DA (1997) Polyhedron 16:3165

    Article  CAS  Google Scholar 

  2. Topsoe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysts, science and technology, vol 11. Springer, Berlin

    Google Scholar 

  3. Prins R, de Beer VHJ, Somorjai GA (1989) Catal Rev-Sci Eng 31:1

    Article  CAS  Google Scholar 

  4. Gellman AJ, Farias MH, Salmeron M, Somorjai GA (1984) Surf Sci 136:217

    Article  CAS  Google Scholar 

  5. Wiegenstein CG, Schulz KH (1999) J Phys Chem B 103:6913

    Article  CAS  Google Scholar 

  6. He JW, Shea WL, Jiang X, Goodman DW (1990) J Vac Sci Technol A 8:2435

    Article  CAS  Google Scholar 

  7. Wu MC, Cesar AE, Corneille JS, Goodman DW (1992) J Chem Phys 96:3892

    Article  CAS  Google Scholar 

  8. Helveg S, Lauritsen JV, Laegsgaard E, Stensgaard I, Norskov JK, Clausen BS, Topsoe H, Besenbacher F (2000) Phys Rev Lett 84:951

    Article  CAS  Google Scholar 

  9. Kibsgaard J, Lauritsen JV, Laegsgaard E, Clausen BS, Topsoe H, Besenbacher F (2006) J Am Chem Soc 128:13950

    Article  CAS  Google Scholar 

  10. Lauritsen JV, Bollinger MV, Laegsgaard E, Jacobsen KW, Norskov JK, Clausen BS, Topsoe H, Besenbacher F (2004) J Catal 221:510

    Article  CAS  Google Scholar 

  11. Tenne R, Homyonfer M, Feldman Y (1998) Chem Mater 10(11):3225

    Article  CAS  Google Scholar 

  12. Bing Z, Hermans S, Somorjai GA (eds) (2004) Nanotechnology in catalysis. Springer series: nanostructure science and technology, ISBN 0-306-48323-8

  13. Dhas NA, Suslick KS (2005) J Am Chem Soc 127:2368

    Article  CAS  Google Scholar 

  14. Chen J, Li SL, Xu Q, Tanaka K (2002) Chem Commun 1722

  15. Whitten JE (2003) Surf Sci 546:107

    Article  CAS  Google Scholar 

  16. Maskina AV (2003) Kinet Catal 44:277

    Article  Google Scholar 

  17. Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) J Am Chem Soc 118:5362

    Article  CAS  Google Scholar 

  18. Wang J, Hokkanen B, Burghaus U (2005) Surf Sci 577:158

    Article  CAS  Google Scholar 

  19. Goering J, Burghaus U (2007) Chem Phys Lett 447:121

    Article  CAS  Google Scholar 

  20. Becker Th, Hövel St, Boas Ch, Kunat M, Burghaus U, Wöll Ch (2001) Surf Sci 486:L502

    Article  CAS  Google Scholar 

  21. Kopnov F, Yoffe A, Leitus G, Tenne R (2006) Phys Stat Solidi B 243:1229

    Article  CAS  Google Scholar 

  22. http://webbook.nist.gov/chemistry/

  23. Funk S, Goering J, Burghaus U (2008) Appl Surf Sci 254:5271

    Article  CAS  Google Scholar 

  24. Funk S, Nurkic T, Burghaus U (2007) Appl Surf Sci 253:4860

    Article  CAS  Google Scholar 

  25. Seets DC, Wheeler MC, Mullins CB (1997) Chem Phys Lett 266:431

    Article  CAS  Google Scholar 

  26. Kadossov E, Goering J, Burghaus U (2007) Surf Sci 601:3421

    Article  CAS  Google Scholar 

  27. Burghaus U, Conrad H (1997) Surf Sci 370:17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NDSU acknowledges financial support through an NSF-CAREER (CHE-0743932) Grant and by the DoE (“Catalyis and Chemical Transformation”—FAR0013206). Work was also performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DoE. RT acknowledges the support of “NanoMaterials, Ltd.” and the H. Perlman Foundation and the Moskowitz Center for Bio-Nano Imaging of the Weizmann Institute. RT is the director of the Helen and Martin Kimmel center for Nanoscale Science and holds the Drake Family Chair in Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Burghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goering, J., Burghaus, U., Arey, B.W. et al. Reactive and Non-reactive Interactions of Thiophene with WS2 Fullerene-like Nanoparticles: An Ultra-high Vacuum Surface Chemistry Study. Catal Lett 125, 236–242 (2008). https://doi.org/10.1007/s10562-008-9565-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9565-7

Keywords

Navigation