Skip to main content

Advertisement

Log in

GATA4-Twist1 Signalling in Disturbed Flow-Induced Atherosclerosis

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Endothelial cell (EC) dysfunction (enhanced inflammation, proliferation and permeability) is the initial trigger for atherosclerosis. Atherosclerosis shows preferential development near branches and bends exposed to disturbed blood flow. By contrast, sites that are exposed to non-disturbed blood flow are atheroprotected. Disturbed flow promotes atherosclerosis by promoting EC dysfunction. Blood flow controls EC function through transcriptional and post-transcriptional mechanisms that are incompletely understood.

Methods and Results

We identified the developmental transcription factors Twist1 and GATA4 as being enriched in EC at disturbed flow, atheroprone regions of the porcine aorta in a microarray study. Further work using the porcine and murine aortae demonstrated that Twist1 and GATA4 expression was enhanced at the atheroprone, disturbed flow sites in vivo. Using controlled in vitro flow systems, the expression of Twist1 and GATA4 was enhanced under disturbed compared to non-disturbed flow in cultured cells. Disturbed flow promoted Twist1 expression through a GATA4-mediated transcriptional mechanism as revealed by a series of in vivo and in vitro studies. GATA4-Twist1 signalling promoted EC proliferation, inflammation, permeability and endothelial-to-mesenchymal transition (EndoMT) under disturbed flow, leading to atherosclerosis development, as shown in a combination of in vitro and in vivo studies using GATA4 and Twist1-specific siRNA and EC-specific GATA4 and Twist1 Knock out (KO) mice.

Conclusions

We revealed that GATA4-Twist1-Snail signalling triggers EC dysfunction and atherosclerosis; this work could lead to the development of novel anti-atherosclerosis therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kwak BR, Bäck M, Bochaton-Piallat ML, Caligiuri G, Daemen MJAP, Davies PF, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35:3013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler Thromb Vasc Biol. 2007;27:346–51.

    Article  CAS  PubMed  Google Scholar 

  3. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, et al. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A. 2004;101:2482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20:368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo D, Chien S, Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow - distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res. 2007;100:564–71.

    Article  CAS  PubMed  Google Scholar 

  7. Cancel LM, Tarbell JM. The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am J Physiol Heart Circ Physiol. 2011;300:769–76.

    Article  CAS  Google Scholar 

  8. Cuhlmann S, Van der Heiden K, Saliba D, et al. Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1 a novel mode of NF-kappa B regulation that promotes arterial inflammation. Circ Res. 2011;108:950–9.

    Article  CAS  PubMed  Google Scholar 

  9. Senbanerjee S, Lin Z, Atkins BG, et al. KLF2 as a novel transcriptional regulator of endothelial cell function. J Exp Med. 2004;199:1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunn J, Qiu H, Kimet S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni CW, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood. 2010;116:66–73.

    Article  CAS  Google Scholar 

  12. Serbanovic-Canic J, de Luca A, Warboys C, Ferreira PF, Luong LA, Hsiao S, et al. A zebrafish model for functional screening of mechanosensitive genes. Arterioscler Thromb Vasc Biol. 2017;37:130–43.

    Article  CAS  PubMed  Google Scholar 

  13. Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F. Sequence of the twist gene and nuclear-localization of its protein in endomesodermal cells of early drosophila embryos. EMBO J. 1988;7:2175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou J, Lee PL, Tsai CS, Lee CI, Yang TL, Chuang HS, et al. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109:7770–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schlesinger J, Schueler M, Grunert M, et al. The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 2011;7:1001313.

    Article  CAS  Google Scholar 

  17. McFadden DG, Charité J, Richardson JA, Srivastava D, Firulli AB, Olson ENA. GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development. 2000;127:5331–41.

    CAS  PubMed  Google Scholar 

  18. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.

    Article  CAS  PubMed  Google Scholar 

  19. Grépin C, Robitaille L, Antakly T, Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol. 1995;15:4095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002;16:784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, et al. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development. 2013;140:1639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–72.

    Article  CAS  PubMed  Google Scholar 

  23. Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A. 2004;101:12573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106.

    Article  CAS  PubMed  Google Scholar 

  25. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6:423–35.

    Article  CAS  PubMed  Google Scholar 

  26. Connerney J, Andreeva V, Lesham Y, et al. Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol. 2008;318:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loebel DA, O'Rourke MP, Steiner KA, Banyer J, Tam PP. Isolation of differentially expressed genes from wild-type and Twist mutant mouse limb buds. Genesis. 2002;33:103–13.

    Article  CAS  PubMed  Google Scholar 

  28. Rice DPC, Connor EC, Veltmaat JM, Lana-Elola E, Veistinen L, Tanimoto Y, et al. Gli3(Xt−J/Xt−J) mice exhibit lambdoid suturecraniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Human Mol Gen. 2010;19:3457–67.

    Article  CAS  Google Scholar 

  29. Markwald RR, Fitzharris TP, Smith WN. Structural analysis of endocardial cytodifferentiation. Dev Biol. 1975;42:160–80.

    Article  CAS  PubMed  Google Scholar 

  30. Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139:3471–86.

    Article  CAS  PubMed  Google Scholar 

  31. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial– mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daoud G, Kempf H, Kumar D, Kozhemyakina E, Holowacz T, Kim DW, et al. BMP-mediated induction of GATA4/5/6 blocks somatic responsiveness to SHH. Development. 2014;141:3978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin X, Xu X. Distinct functions of Wnt/β-catenin signaling in KV development and cardiac asymmetry. Development. 2008;136:207–17.

    Article  CAS  Google Scholar 

  34. Reinhold MI, Kapadia RM, Liao Z, Naski MC. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem. 2006;281:1381–8.

    Article  CAS  PubMed  Google Scholar 

  35. George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction. 2015;150:383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen HF, Huang CH, Liu CJ, Hung JJ, Hsu CC, Teng SC, et al. Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun. 2014;5:4697.

    Article  CAS  PubMed  Google Scholar 

  37. O'Rourke MP, Soo K, Behringer RR, Hui CC, Tam PP. Twist plays an essential role in FGF and SHH signal transduction during mouse limb development. Dev Biol. 2002;248:143–56.

    Article  CAS  PubMed  Google Scholar 

  38. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, et al. Transcription factor genes Smad4 and Gata4cooperatively regulate cardiac valve development. Proc Natl Acad Sci U S A. 2011;108:4006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rivera-Feliciano J, Lee KH, Kong SK, Rajagopal S, Ma Q, Springer Z, et al. Development of heart valves requires Gata4expression in endothelial-derived cells. Development. 2006;133:3607–18.

    Article  CAS  PubMed  Google Scholar 

  40. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71:3980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chakraborty S, Wirrig EE, Hinton RB, Merrill WH, Spicer DB, Yutzey KE. Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol. 2010;347:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Ling MT, Guan XY, Tsao SW, Cheung HW, Lee DT, et al. Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene. 2004;23:474–82.

    Article  CAS  PubMed  Google Scholar 

  44. Chia NY, Deng N, Das K, Huang D, Hu L, Zhu Y, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015;64:707–19.

    Article  CAS  PubMed  Google Scholar 

  45. Takagi K, Moriguchi T, Miki Y, Nakamura Y, Watanabe M, Ishida T, et al. GATA4 immunolocalization in breast carcinoma as a potent prognostic predictor. Cancer Sci. 2014;105:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahmoud MM, Kim HR, Xing R, Hsiao S, Mammoto A, Chen J, et al. TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ Res. 2016;119:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol. 2014;34:985–95.

    Article  CAS  PubMed  Google Scholar 

  48. Dardik A, Chen LL, Frattini J, Asada H, Aziz F, Kudo FA, et al. Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg. 2005;41:869–80.

    Article  PubMed  Google Scholar 

  49. Gitelman I. Twist protein in mouse embryogenesis. Dev Biol. 1997;189:205–14.

    Article  CAS  PubMed  Google Scholar 

  50. Mahmoud MM, Serbanovic-Canic J, Feng S, Souilhol C, Xing R, Hsiao S, et al. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep. 2017;7:3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moonen JA, Lee ES, Schmidt M, et al. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res. 2015;108:377–86.

    Article  CAS  PubMed  Google Scholar 

  52. Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125:4514–28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Evrard SM, Lecce L, Michelis KC, Nomura-Kitabayashi A, Pandey G, Purushothaman KR, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tenhunen O, Sármán B, Kerkelä R, Szokodi I, Papp L, Tóth M, et al. Mitogen-activated protein kinases p38 and ERK 1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heart. J Biol Chem. 2004;279:24852–60.

    Article  CAS  PubMed  Google Scholar 

  55. Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell. 2008;15:470–7.

    Article  CAS  PubMed  Google Scholar 

  56. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I wish to thank members of the Evans lab and the Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, for the help and support with this work. This work was funded by the British Heart Foundation. I wish to also thank the BSCR committee and The Bernard and Joan Marshall Early Career Investigator Prize Judging panel for the award and for the opportunity to present my work.

Funding

This study was funded by the British Heart Foundation (RG/13/1/30042).

Author information

Authors and Affiliations

Authors

Contributions

Contributions: (1) Conception and design: M. Mahmoud and P. Evans. (2) Administrative support: None. (3) Provision of study material or patients: None. (4) Collection and assembly of data: M. Mahmoud. (5) Data analysis and interpretation: M. Mahmoud and P. Evans. (6) Manuscript writing: All authors. (7) Final approval of manuscript: All authors.

Corresponding author

Correspondence to Marwa Mahmoud.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M., Souilhol, C., Serbanovic-Canic, J. et al. GATA4-Twist1 Signalling in Disturbed Flow-Induced Atherosclerosis. Cardiovasc Drugs Ther 33, 231–237 (2019). https://doi.org/10.1007/s10557-019-06863-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06863-3

Keywords

Navigation