Skip to main content

Advertisement

Log in

Different responses of the myocardial contractility by layer following acute pressure unloading in severe aortic stenosis patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study evaluated change in left ventricle (LV) biomechanics, layer-by-layer, following acute pressure unloading in patients with severe aortic stenosis (AS). In twenty-eight consecutive patients with severe AS who underwent transcatheter aortic valve replacement (TAVR), LV peak global longitudinal and circumferential strains of the endo-, midmyo- and epicardium were evaluated using multilayer speckle tracking echocardiography before, 1 week after, and 1 month after TAVR. Longitudinal and circumferential strains were significantly highest in the endocardium and lowest in the epicardium at baseline. At 1 month following TAVR, longitudinal strain significantly improved in all layers compared with the baseline [endocardium (%) −16.7 ± 3.8 vs. −18.6 ± 3.3, P = 0.01; mid-myocardium −14.4 ± 3.2 vs. −16.2 ± 3.5, P < 0.01; epicardium −12.4 ± 2.8 vs. −13.6 ± 2.6, P = 0.01], whereas LV ejection fraction and circumferential strain remained unchanged. Importantly, only those with LV hypertrophy demonstrated improved longitudinal strain [endocardium (%) −15.7 ± 3.0 vs. −18.7 ± 2.9, P < 0.01; mid-myocardium −13.6 ± 2.7 vs. −16.0 ± 2.5, P < 0.01; epicardium −11.8 ± 2.4 vs. −13.7 ± 2.3, P < 0.01]. The improvement in longitudinal strain was more prominent in the endocardium, which was evident even at an early time point (1 week) after TAVR. Longitudinal strain significantly improved in all three layers following acute pressure unloading, the most prominent of which was observed in the endocardium. Evaluation of multilayer strain may provide new insights into the LV mechanics in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Aortic stenosis

AV:

Aortic valve

AVA:

Aortic valve area

AR:

Aortic regurgitation

CW:

Continuous wave

EF:

Ejection fraction

GCS:

Global circumferential strain

GLS:

Global longitudinal strain

ICC:

Intraclass correlation coefficient

IVSd:

Inter-ventricular septal thickness

LV:

Left ventricle

LVEDD:

LV end-diastolic diameter

LVESD:

LV end-systolic diameter

LVH:

LV hypertrophy

LVPWd:

LV posterior wall thickness at diastole

LVMI:

LV mass index

PG:

Pressure gradient

SD:

Standard deviation

TAVR:

Transcatheter aortic valve replacement

References

  1. Hyodo E, Arai K, Koczo A, Shimada YJ, Fujimoto K, Di Tullio MR, Homma S, Gillam LD, Hahn RT (2012) Alteration in subendocardial and subepicardial myocardial strain in patients with aortic valve stenosis: an early marker of left ventricular dysfunction? J Am Soc Echocardiogr 25(2):153–159

    Article  PubMed  Google Scholar 

  2. Staron A, Bansal M, Kalakoti P, Nakabo A, Gasior Z, Pysz P, Wita K, Jasinski M, Sengupta PP (2013) Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement. Int J Cardiovasc Imaging 29(4):797–808

    Article  PubMed  Google Scholar 

  3. Iwahashi N, Nakatani S, Kanzaki H, Hasegawa T, Abe H, Kitakaze M (2006) Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis. J Am Soc Echocardiogr 19(10):1238–1244

    Article  PubMed  Google Scholar 

  4. Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, Versteegh MI, Holman ER, Schalij MJ, Bax JJ (2009) Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J 30(24):3037–3047

    Article  PubMed  Google Scholar 

  5. Giannini C, Petronio AS, Talini E, De Carlo M, Guarracino F, Grazia M, Donne D, Nardi C, Conte L, Barletta V, Marzilli M, Di Bello V (2011) Early and late improvement of global and regional left ventricular function after transcatheter aortic valve implantation in patients with severe aortic stenosis: an echocardiographic study. Am J Cardiovasc Dis 1(3):264–273

    PubMed Central  PubMed  Google Scholar 

  6. Leitman M, Lysiansky M, Lysyansky P, Friedman Z, Tyomkin V, Fuchs T, Adam D, Krakover R, Vered Z (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23(1):64–70

    Article  PubMed  Google Scholar 

  7. Ohara Y, Fukuoka Y, Tabuchi I, Sahara S, Hosogi S, Nishimoto M, Yamamoto K (2012) The impairment of endocardial radial strain is related to aortic stenosis severity in patients with aortic stenosis and preserved LV ejection fraction using two-dimensional speckle tracking echocardiography. Echocardiography 29(10):1172–1180

    Article  PubMed  Google Scholar 

  8. Manaka M, Tanaka N, Takei Y, Kurohane S, Takazawa K, Yamashina A (2005) Assessment of regional myocardial systolic function in hypertensive left ventricular hypertrophy using harmonic myocardial strain imaging. J Cardiol 45(2):53–60

    PubMed  Google Scholar 

  9. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463

  10. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA, Doppler Quantification Task Force of the N, Standards Committee of the American Society of E (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15(2):167–184

    Article  PubMed  Google Scholar 

  11. Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, Bucker A, Hanrath P, Hoffmann R (2006) Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 92(8):1102–1108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Altiok E, Neizel M, Tiemann S, Krass V, Kuhr K, Becker M, Zwicker C, Koos R, Lehmacher W, Kelm M, Marx N, Hoffmann R (2012) Quantitative analysis of endocardial and epicardial left ventricular myocardial deformation-comparison of strain-encoded cardiac magnetic resonance imaging with two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 25(11):1179–1188

    Article  PubMed  Google Scholar 

  13. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U (2012) EuroSCORE II. Eur J Cardiothorac Surg 41(4):734–744

    Article  PubMed  Google Scholar 

  14. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK (2006) Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 48(10):1988–2001

    Article  PubMed  Google Scholar 

  15. Monte IP, Mangiafico S, Buccheri S, Arcidiacono AA, Lavanco V, Privitera F, Leggio S, Deste W, Tamburino C (2014) Early changes of left ventricular geometry and deformational analysis in obese subjects without cardiovascular risk factors: a three-dimensional and speckle tracking echocardiographic study. Int J Cardiovasc Imaging 30(6):1037–1047

    Article  PubMed  Google Scholar 

  16. Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–H1907

    Article  CAS  PubMed  Google Scholar 

  17. Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K (2014) Three-dimensional speckle tracking echocardiography. Circ J 78(6):1290–1301

    Article  PubMed  Google Scholar 

  18. Schattke S, Baldenhofer G, Prauka I, Zhang K, Laule M, Stangl V, Sanad W, Spethmann S, Borges AC, Baumann G, Stangl K, Knebel F (2012) Acute regional improvement of myocardial function after interventional transfemoral aortic valve replacement in aortic stenosis: a speckle tracking echocardiography study. Cardiovasc Ultrasound 10:15

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lee SP, Kim YJ, Kim JH, Park K, Kim KH, Kim HK, Cho GY, Sohn DW, Oh BH, Park YB (2011) Deterioration of myocardial function in paradoxical low-flow severe aortic stenosis: two-dimensional strain analysis. J Am Soc Echocardiogr 24(9):976–983

    Article  PubMed  Google Scholar 

  20. Moen CA, Salminen PR, Dahle GO, Hjertaas JJ, Grong K, Matre K (2013) Multi-layer radial systolic strain vs. one-layer strain for confirming reperfusion from a significant non-occlusive coronary stenosis. Eur Heart J Cardiovasc Imaging 14(1):24–37

    Article  PubMed  Google Scholar 

  21. Sarvari SI, Haugaa KH, Zahid W, Bendz B, Aakhus S, Aaberge L, Edvardsen T (2013) Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging 6(5):535–544

    Article  PubMed  Google Scholar 

  22. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R (2009) Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr 10(2):303–308

    Article  PubMed  Google Scholar 

  23. Sakurai D, Asanuma T, Masuda K, Hioki A, Nakatani S (2014) Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int J Cardiovasc Imaging 30(4):739–748

    Article  PubMed  Google Scholar 

  24. Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, Camici PG (2002) Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation 105(4):470–476

    Article  PubMed  Google Scholar 

  25. Carabello BA (1995) The relationship of left ventricular geometry and hypertrophy to left ventricular function in valvular heart disease. J Heart Valve Dis 4(Suppl 2):S132–S138 (discussion S138–S139)

    PubMed  Google Scholar 

  26. Schwartzkopff B, Frenzel H, Dieckerhoff J, Betz P, Flasshove M, Schulte HD, Mundhenke M, Motz W, Strauer BE (1992) Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J 13(Suppl D):17–23

    Article  PubMed  Google Scholar 

  27. Cramariuc D, Gerdts E, Davidsen ES, Segadal L, Matre K (2010) Myocardial deformation in aortic valve stenosis: relation to left ventricular geometry. Heart 96(2):106–112

    Article  PubMed Central  PubMed  Google Scholar 

  28. Badran HM, Faheem N, Ibrahim WA, Elnoamany MF, Elsedi M, Yacoub M (2013) Systolic function reserve using two-dimensional strain imaging in hypertrophic cardiomyopathy: comparison with essential hypertension. J Am Soc Echocardiogr 26(12):1397–1406

    Article  PubMed  Google Scholar 

  29. Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Aronson D, Reisner SA, Rakowski H, Bolotin G, Agmon Y (2011) Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol 107(7):1052–1057

    Article  PubMed  Google Scholar 

  30. Carasso S, Mutlak D, Lessick J, Reisner SA, Rakowski H, Agmon Y (2014) Symptoms in severe aortic stenosis are associated with decreased compensatory circumferential myocardial mechanics. J Am Soc Echocardiogr 28(2):218–225

    Article  PubMed  Google Scholar 

  31. Nakatani S (2011) Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound 19(1):1–6

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sun-Jin Kim, RN, RDCS and Tae-Kyeong Lee, RN for their help in taking care of the database and Mi-Kyeong Hong, RDCS for her help in analyzing the strain data.

Grants

This study was supported by an unrestricted grant from Yuhan pharmaceuticals (Grant No. 0620140450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Pyo Lee.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Lee, SP., Park, C.S. et al. Different responses of the myocardial contractility by layer following acute pressure unloading in severe aortic stenosis patients. Int J Cardiovasc Imaging 32, 247–259 (2016). https://doi.org/10.1007/s10554-015-0759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0759-y

Keywords

Navigation