Skip to main content

Advertisement

Log in

Wave Flow Simulations Over Arctic Leads

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the flow over Arctic leads using a mesoscale numerical model, typical of both summer and winter, under idealised conditions. We find that Arctic leads may be the source of standing atmospheric internal gravity waves during both seasons. The summertime wave may be compared with the wave generated by a small ridge, though with the phase reversed. The mechanism for exciting the wave is found to be the internal boundary layer developing due to horizontal variations in surface temperature and roughness length. During the more exploratory wintertime simulations, with substantial temperature difference between the lead and the ice surface, we find that secondary circulations and intermittent wave-breaking may occur. The effects of the lead appear far downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. K. Bigg C. Leck E. D. Nilsson (1996) ArticleTitle‘Sudden Changes in Arctic Atmospheric Aerosol Concentrations During Summer and Autumn’ Tellus 48B IssueID2 254–271

    Google Scholar 

  • E. K. Bigg (1997) ArticleTitle‘A Mechanism for the Formation of New Particles in the Atmosphere’ Atmos. Res 43 IssueID2 129–137

    Google Scholar 

  • A. K. Blackadar (1962) ArticleTitle‘The Vertical Distribution of Wind and Turbulent Exchange in Neutral Atmosphere’ J. Geophys. Res 67 3095–3102 Occurrence Handle10.1029/JZ067i008p03095

    Article  Google Scholar 

  • L. Enger B. Grisogono (1998) ArticleTitle‘The Response of Bora-type Flow to Sea Surface Temperature’ Quart. J. Roy. Meteorol. Soc 124 IssueID548 1227–1244 Occurrence Handle10.1256/smsqj.54809

    Article  Google Scholar 

  • B. Grisogono (1995) ArticleTitle‘Wave Drag Effects in a Mesoscale Model with Higher-order Closure Turbulence Scheme’ J.Appl. Meteorol 34 IssueID4 941–954 Occurrence Handle10.1175/1520-0450(1995)034<0941:WDEIAM>2.0.CO;2

    Article  Google Scholar 

  • R. M. Hodur (1997) ArticleTitle‘The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS™)’ Mon. Wea. Rev 125 IssueID7 1414–1430

    Google Scholar 

  • J. B. Klemp R. B. Wilhelmson (1978) ArticleTitle‘Simulation of Three-dimensional Convective Storm Dynamics’ J. Atmos. Sci 35 IssueID6 1070–1110

    Google Scholar 

  • R. W. Lindsay D. A. Rothrock (1995) ArticleTitle‘Arctic Sea Ice Leads from Advanced very High Resolution Radiometer Images’ J. Geophys. Res 100 IssueIDC3 4533–4544 Occurrence Handle10.1029/94JC02393

    Article  Google Scholar 

  • J. S. Malkus M. E. Stern (1953) ArticleTitle‘The Flow of a Stable Atmosphere Over a Heated Island part I’ J. Meteorol 10 30–41

    Google Scholar 

  • G. L. Mellor T. Yamada (1982) ArticleTitle‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’ Rev. Geophys. Space Phys 20 IssueID4 851–875

    Google Scholar 

  • M. W. Miles R. G. Barry (1998) ArticleTitle‘A 5-year Satellite Climatology of Winter Sea Ice Leads in the Western Arctic’ J. Geophys. Res 103 IssueIDC10 21723–21734 Occurrence Handle10.1029/98JC01997

    Article  Google Scholar 

  • Nappo, C. J.: 2002, An Introduction to Atmospheric Gravity Waves, International geophysics series, Vol. 85, Academic Press, 276 pp.

  • I. R. Paluch D. H. Lenschow Q. Wang (1997) ArticleTitle‘Arctic Boundary Layer in the Fall Season Over Open and Frozen Sea’ J. Geophys. Res 102 IssueIDD22 25955–25971 Occurrence Handle10.1029/97JD01563

    Article  Google Scholar 

  • Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., and Perovich, D. K.: 2002, `Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Near-surface Conditions and Surface Energy Budget’, J. Geophys. Res. 107(Cl0).

  • Pinto, J. O., Alam, A., Maslanik, J. A. Curry, J. A., and Stone, R. S.: 2003, `Surface Characteristics and Atmospheric Footprint of Springtime Arctic leads at SHEBA’, Geophys. Res. 108(C4).

  • G. S. Poulos S. P. Burns (2003) ArticleTitle‘An Evaluation of Bulk Ri-Based Surface Layer Flux Formulas for Stable and Very Stable Conditions with Intermittent Turbulence’ J. Atmos. Sci 60 IssueID20 2523–2537 Occurrence Handle10.1175/1520-0469(2003)060<2523:AEOBRS>2.0.CO;2

    Article  Google Scholar 

  • P. Queney (1948) ArticleTitle‘The Problem of Air Flow Over Mountains: A Summary of Theoretical Studies’ Bull. Amen. Meteorol. Soc 29 16–26

    Google Scholar 

  • D. Ruffieux P. O. G. Persson C. W. Fairall D. E. Wolfe (1995) ArticleTitle‘Ice Pack and Lead Surface Energy Budgets During LEADEX 1992’ J. Geophys. Res 100 IssueIDC3 4593–4612 Occurrence Handle10.1029/94JC02485

    Article  Google Scholar 

  • R. B. Smith (1979) ArticleTitle‘Influence of Mountains on the Atmosphere’ Adv. Geophys 21 87–217

    Google Scholar 

  • R. B. Stull (1988) An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordrecht 666

    Google Scholar 

  • T. Uttal J. A. Curry M. G. McPhee D. K. Perovich R. E. Moritz J. A. Maslanik P. S. Guest H. L. Stern J. A. Moore R. Turenne A. Heiberg M. C. Serreze D. P. Wylie P. O. G. Persson et al. (2002) ArticleTitle‘Surface Heat Budget of the Arctic Ocean’ Bull. Amer. Meteorol. Soc 83 IssueID2 255–275

    Google Scholar 

  • T. Yamada (1977) ArticleTitle‘Numerical Experiment on Pollutant Dispersion in a Horizontally Homogeneous Atmospheric Boundary Layer’ Atmos. Environ 11 IssueID11 1015–1024

    Google Scholar 

  • Zulauf, M. A. and Krueger, S. K.: 2003, `Two-dimensional Numerical Simulations of Arctic Leads: Plume Penetration Height’, J. Geophys. Res. 108;(C2).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Mauritsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauritsen, T., Svensson, G. & Grisogono, B. Wave Flow Simulations Over Arctic Leads. Boundary-Layer Meteorol 117, 259–273 (2005). https://doi.org/10.1007/s10546-004-1427-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-1427-2

Keywords

Navigation