Skip to main content
Log in

Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Acceleration signals, collected from the inner and the outer heart wall, offer a mean of assessing cardiac function during surgery. Accelerometric measurements can also provide detailed insights into myocardial motion during exploratory investigations. Two different implantable accelerometers to respectively record endocardial and epicardial vibrations, have been developed by packaging a commercially available capacitive transducer. The same coating materials have been deposited on the two devices to ensure biocompatibility of the implants: Parylene-C, medical epoxy and Polydimethylsiloxane (PDMS). The different position-specific requirements resulted in two very dissimilar sensor assemblies. The endocardial accelerometer, that measures accelerations from the inner surface of the heart during acute animal tests, is a 2 mm-radius hemisphere fixed on a polymethyl methacrylate (PMMA) rod to be inserted through the heart wall. The epicardial accelerometer, that monitors the motion of the outer surface of the heart, is a three-legged structure with a stretchable polytetrafluoroethylene (PTFE) reinforcement. This device can follow the continuous motion of the myocardium (the muscular tissue of the heart) during the cardiac cycle, without hindering its natural movement. Leakage currents lower than 1 μA have been measured during two weeks of continuous operation in saline. Both transducers have been used, during animal tests, to simultaneously record and compare acceleration signals from corresponding locations on the inner and the outer heart wall of a female sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • T.P. Abraham, R.A. Nishimura, J. Am. Coll. Cardiol. 37, 3 (2001)

    Article  Google Scholar 

  • O.D. Bernal, K. Choe, P.K. Gopalakrishnan, H.Y. Cheng, K.R. Krishna, D. Nuttman, N. Axelrod, M. Je, Conf Proc IEEE Eng Med Biol Soc (2010). doi:10.1109/IEMBS.2010.5627928

  • L. Brancato, T. Weydts, H. De Clercq, T. Dimiaux, P. Herijgers, R. Puers, Procedia Eng. (2015). doi:10.1016/j.proeng.2015.08.704

  • L.A. Fleischer, P.S. Halvorsen, L. Hoff, E. Fosse, O.J. Elle, IFMBE Proc. (2008). doi:10.1007/978-3-540-69367-3_60

  • A.N. Gent, Rubber. Chem. Technol. 31, 4 (1958)

    Google Scholar 

  • O.J. Grymyr, E.W. Remme, A. Espinoza, H. Skulstad, O.J. Elle, E. Fosse, P.S. Halvorsen, Interact. Cardiovasc. Thorac. Surg. 20, 3 (2015)

    Article  Google Scholar 

  • P.S. Halvorsen, A. Espinoza, L.A. Fleischer, O.J. Elle, L. Hoff, R. Lundblad, H. Skulstad, T. Edvardsen, H. Ihlen, E. Fosse, J. Thorac. Cardiovasc. Surg 136, 6 (2008)

    Article  Google Scholar 

  • K. Imenes, K. Aasmundtveit, E.M. Husa, J.O. Høgetveit, S. Halvorsen, O.J. Elle, P. Mirtaheri, E. Fosse, L. Hoff, Biomed. Microdevices 9, 6 (2007)

    Article  Google Scholar 

  • I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 3 (2014)

    Article  Google Scholar 

  • L. Mandinov, F.R. Eberli, C. Seiler, O.M. Hess, Cardiovasc. Res. 45, 4 (2000)

    Article  Google Scholar 

  • J. Mansourati, M. Heurteau, J. Abaléa, J. Med. Case Rep. 8, 27 (2014)

    Article  Google Scholar 

  • E. Marcelli, G. Plicchi, L. Cercenelli, F. Bortolami, ASAIO J. 51, 6 (2005)

    Article  Google Scholar 

  • E. Marcelli, E. Vanoli, G.G. Mattera, G. Gaggini, L. Cercenelli, G. Plicchi, J. Mech. Med. Biol. 6, 75 (2006)

    Article  Google Scholar 

  • M. Markert, M. Stubhan, K. Mayer, T. Trautmann, A. Klumpp, A. Schuler-Metz, K. Schumacher, B. Guth, J. Pharmacol. Toxicol. Methods 60, 1 (2009)

    Article  Google Scholar 

  • K. Norton, G. Iacono, M. Vezina, J. Pharmacol. Toxicol. Methods 60, 2 (2009)

    Google Scholar 

  • T. Onishi, S.K. Saha, A. Delgado-Montero, D.R. Ludwig, T. Onishi, E.B. Schelbert, D. Schwartzman, J. Gorcsan, J. Am. Soc. Echocardiogr. 28, 5 (2015)

    Article  Google Scholar 

  • V. Padmanabhan, J.L. Semmlow, W. Welkowitz, IEEE Trans. Biomed. Eng. 40, 1 (1993)

    Article  Google Scholar 

  • G. Plicchi, E. Marcelli, M. Parlapiano, G. Gaggini, Pacing Clin. Electrophysiol. 26(4), 2 (2003)

    Google Scholar 

  • G. Plicchi, E. Marcelli, L. Cercenelli, J Mech Med Biol 6, 81 (2006)

    Article  Google Scholar 

  • A. F. Rickards, T. Bombardini, G. Corbucci, G. Plicchi, Pacing Clin Electrophysiol 19(12pt1), 2066-2071 (1996)

    Google Scholar 

  • A. Santoro, F. Alvino, G. Antonelli, M. Cameli, M. Bertini, R. Molle, S. Mondillo, Echocardiography 32, 6 (2015)

    Article  Google Scholar 

  • R.D. Sarazan, S. Mittelstadt, B. Guth, J. Koerner, J. Zhang, S. Pettit, Int. J. Toxicol. 30, 3 (2011)

    Article  Google Scholar 

  • M.L. Shehata, S. Cheng, N.F. Osman, D.A. Bluemke, J.A. Lima, J. Cardiovasc. Magn. Reson. (2009). doi:10.1186/1532-429X-11-55

  • H. Skulstad, S. Urheim, T. Edvardsen, K. Andersen, E. Lyseggen, T. Vartdal, H. Ihlen, O.A. Smiseth, J. Am. Coll. Cardiol. 47, 8 (2006)

    Article  Google Scholar 

  • H.M. Tang, H. Ju, S. Zhao, C. LaDuke, S. Hahn, J. Glick, C. Carey, G.S. Friedrichs, J. Pharmacol. Toxicol. Methods (2016). doi:10.1016/j.vascn.2015.09.005

  • H.P. Theres, D.R. Kaiser, S.D. Nelson, M. Glos, T. Leuthold, G. Baumann, S. Sowelam, T.J. Sheldon, L. Stylos, Pacing Clin. Electrophysiol. 27, 5 (2004)

    Article  Google Scholar 

  • J.C. Wood, M.P. Festen, M.J. Lim, A.J. Buda, D.T. Barry, J. Appl. Physiol. 76, 1 (1994)

    Article  Google Scholar 

  • L. Wu, T. Germans, A. Güçlü, M.W. Heymans, C.P. Allaart, van A. C. Rossum. J. Cardiovasc. Magn. Reson. (2014). doi:10.1186/1532-429X-16-10

  • J.L. Zamorano, A. Saltijeral, L. Perez de Isla, E-Journal of Cardiology Practice 8, 10 (2009)

    Google Scholar 

  • A. Zurbuchen, A. Pfenniger, A. Stahel, C.T. Stoeck, S. Vandenberghe, V.M. Koch, R. Vogel, Ann. Biomed. Eng. 41, 1 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Research Counsil (ERC-2013-AG), MicroThalys, grant agreement No. 340931 and the MANPower project, European Commission co-financing programme (FP7-NMP-2013-SMALL-7) under the grant agreement No. A604360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Brancato.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

(MP4 9258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brancato, L., Weydts, T., Oosterlinck, W. et al. Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion. Biomed Microdevices 19, 52 (2017). https://doi.org/10.1007/s10544-017-0199-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0199-7

Keywords

Navigation