Skip to main content
Log in

Continuous-flow thermal gradient PCR

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Continuous-flow thermal gradient PCR is a new DNA amplification technique that is characterized by periodic temperature ramping with no cyclic hold times. The device reported in this article represents the first demonstration of hold-less thermocycling within continuous-flow PCR microfluidics. This is also the first design in which continuous-flow PCR is performed within a single steady-state temperature zone. This allows for straightforward miniaturization of the channel footprint, shown in this device which has a cycle length of just 2.1 cm. With a linear thermal gradient established across the glass device, the heating and cooling ramp rates are dictated by the fluid velocity relative to the temperature gradient. Local channel orientation and cross-sectional area regulate this velocity. Thus, rapid thermocycling occurs while the PCR chip is maintained at steady state temperatures and flow rates. Glass PCR chips (25 × 75 × 2 mm) of both 30 and 40 serpentine cycles have been fabricated, and were used to amplify a variety of targets, including a 181-bp segment of a viral phage DNA (ΦX174) and a 108-bp segment of the Y-chromosome, amplified from human genomic DNA. With this unique combination of hold-less cycling and gradient temperature ramping, a 40-cycle PCR requires less than 9 min, with the resulting amplicon having high yield and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The primer sequences for the selected targets are as follows: ΦX174, 110-bp (F - GGTTCGTCAAGGACTGGTTT, R - TTGAACAGCATCGGACTCAG) ΦX174, 181-bp (F - GCTTCCATGACGCAGAAGTT, R - GCGAAAGGTCGCAAAGTAAG) Y-chromosome, 108-bp (F - ATTACACTACATTCCCTTCCA, R - AGTGAAATTGTATGCAGTAGA)

References

  • W. Cao, C.J. Easley, J.P. Ferrance, J.P. Landers, Anal. Chem. 78, 7222–7228 (2006)

    Article  Google Scholar 

  • J. Chiou, P. Matsudaira, A. Sonin, D. Ehrlich, Anal. Chem. 73, 2018–2021 (2001)

    Article  Google Scholar 

  • C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, PNAS 103, 19272–19277 (2006)

    Article  Google Scholar 

  • T. Fukuba, T. Yamamoto, T. Naganuma, T. Fujii, Chem. Eng. J. 101, 151–156 (2004)

    Article  Google Scholar 

  • P. Garstecki, M.J. Fuerstman, M.A. Fischbach, S.K. Sia, G.M. Whitesides, Lab Chip 6, 207–212 (2006)

    Article  Google Scholar 

  • M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Lab Chip 4, 638–645 (2004)

    Article  Google Scholar 

  • R.M. Jendrejack, E.T. Dimalanta, D.C. Schwartz, M.D. Graham, J.J. de Pablo, Phys. Rev. Lett. 91, (2003)

  • W.M. Kays, M. E. Crawford. Convective Heat and Mass Transfer (McGraw-Hill, New York, 1993), pp. 110–116

    Google Scholar 

  • M.U. Kopp, A.J. de Mello, A. Manz, Science 280, 1046–1048 (1998)

    Article  Google Scholar 

  • J. Lapham, J.P. Rife, P.B. Moore, D.M. Crothers, J. Biomol. Nmr. 10, 255–262 (1997)

    Article  Google Scholar 

  • S.F. Li, D.Y. Fozdar, M.F. Ali, H. Li, D.B. Shao, D.M. Vykoukal, J. Vykoukal, P.N. Floriano, M. Olsen, J.T. McDevitt, P.R.C. Gascoyne, S.C. Chen, Journal of Microelectromechanical Systems 15, 223–236 (2006)

    Article  Google Scholar 

  • H.B. Mao, M.A. Holden, M. You, P.S. Cremer, Anal. Chem. 74, 5071–5075 (2002)

    Article  Google Scholar 

  • T. Nakayama, Y. Kurosawa, S. Furui, K. Kerman, M. Kobayashi, S.R. Rao, Y. Yonezawa, K. Nakano, A. Hino, S. Yamamura, Y. Takamura, E. Tamiya, Anal. Bioanal. Chem. 386, 1327–1333 (2006)

    Article  Google Scholar 

  • P.J. Obeid, T.K. Christopoulos, Anal. Chim. Acta 494, 1–9 (2003a)

    Article  Google Scholar 

  • P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288–295 (2003b)

    Article  Google Scholar 

  • K. Pappaert, J. Biesemans, D. Clicq, S. Vankrunkelsven, G. Desmet, Lab Chip 5, 1104-1110 (2005)

    Article  Google Scholar 

  • K.M. Ririe, R.P. Rasmussen, C.T. Wittwer, Anal. Biochem. 245, 154–160 (1997)

    Article  Google Scholar 

  • M.G. Roper, C.J. Easley, L.A. Legendre, J.A.C. Humphrey, J.P. Landers, Anal. Chem. 79, 1294–1300 (2007)

    Article  Google Scholar 

  • I. Schneegass, R. Brautigam, J.M. Kohler, Lab Chip 1, 42–49 (2001)

    Article  Google Scholar 

  • P.C. Simpson, A.T. Woolley, R.A. Mathies, Biomed. Microdevices 1, 7–25 (1998)

    Article  Google Scholar 

  • K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, Sens. Actuators, B: Chem. 84, 283–289 (2002)

    Article  Google Scholar 

  • H. Wang, J.F. Chen, L. Zhu, H. Shadpour, M.L. Hupert, S.A. Soper, Anal. Chem. 78, 6223–6231 (2006)

    Article  Google Scholar 

  • C.T. Wittwer, M.G. Hermann, in PCR Applications: Protocols for Functional Genomics, eds. by M.A. Innis, D.H. Gelfand, J.J. Sninsky (Academic, San Diego, 1999), pp. 211–229

    Google Scholar 

  • C.T. Wittwer, G.B. Reed, K.M. Ririe, in “Rapid Cycle DNA Amplification.” The Polymerase Chain Reaction, eds. by K.B. Mullis, F. Ferre, R. Gibbs (Springer, Deerfield Beach, 1994), pp. 174–181

    Google Scholar 

  • M. Yang, R. Pal, M. A. Burns, J Micromechanics Microengineering 15, 221–230 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the Utah State Center of Excellence Grants, the University of Utah Synergy Program, and the NSF IGERT Program for the funding of this work. Authors also wish to thank the respective members of the Wittwer and Gale research labs, whose valued contributions have allowed for this project to advance at a welcome pace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Gale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crews, N., Wittwer, C. & Gale, B. Continuous-flow thermal gradient PCR. Biomed Microdevices 10, 187–195 (2008). https://doi.org/10.1007/s10544-007-9124-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9124-9

Keywords

Navigation