Skip to main content
Log in

Drivers of carbon dioxide and methane supersaturation in small, temporary ponds

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Inland waters are an important component of the global carbon cycle, but there is a poor understanding of carbon dynamics in very small ponds. In this study, I evaluated the concentrations and drivers of carbon dioxide (CO2) and methane (CH4) in six small (<1000 m2), temporary, forested ponds in Connecticut, USA. The six ponds were on average 19-fold supersaturated in CO2 and 504-fold supersaturated in CH4 relative to the atmosphere. For both gases, this level of supersaturation is among the highest reported for lentic freshwaters. The physical, chemical, and biological parameters in the ponds differ from larger lakes, and may explain the supersaturation. Specifically, the ponds have high terrestrial carbon loadings, are shallow, and polymictic, meaning much of the water is in contact with the carbon-rich sediments. Pond CO2 concentrations were best predicted by a negative relationship with dissolved oxygen (DO), indicating that substantial respiration, likely from the sediments, drew down oxygen (O2) and produced CO2. The stoichiometric relationship between CO2 supersaturation and O2 undersaturation also implicates anaerobic respiration as a significant source of CO2 production in the ponds. The high carbon, low oxygen, and shallow nature of small ponds were also prime for CH4 supersaturation. Methane concentrations were best predicted by a negative relationship with precipitation, likely because precipitation increased pond depth, diluted dissolved organic carbon and gas concentrations, and increased DO. If the respiration of terrestrial carbon in small ponds is not accounted for in carbon budgets, current estimates of terrestrial net ecosystem productivity may be overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycle 26:GB2041

    Article  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Balmer MB, Downing JA (2011) Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters 1:125–132

    Article  Google Scholar 

  • Barber TR, Burke RA Jr, Sackett WM (1988) Diffusive flux of methane from warm wetlands. Glob Biogeochem Cycle 2:411–425

    Article  Google Scholar 

  • Barton K (2014) Package ‘MuMIn’. R package version 1.0-7

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycle 18:GB4009

    Article  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed effects models using Eigen and S4. R package version 1.0-7

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  Google Scholar 

  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847

    Article  Google Scholar 

  • Brooks RT (2004) Weather-related effects on woodland vernal pool hydrology and hydroperiod. Wetlands 24:104–114

    Article  Google Scholar 

  • Brooks RT (2005) A review of basin morphology and pool hydrology of isolated ponded wetlands: implications for seasonal forest pools of the northeastern United States. Wetl Ecol Manag 13:335–348

    Article  Google Scholar 

  • Brooks RT, Stone J, Lyons P (1998) An inventory of seasonal forest ponds on the Quabbin reservoir watershed, Massachusetts. Northeast Nat 5:219–230

    Article  Google Scholar 

  • Buffam I, Turner MG, Desai AR, Hanson PC, Rusak JA, Lottig NR, Stanley EH, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Change Biol 17:1193–1211

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Capps KA, Berven KA, Tiegs SD (2014) Modelling nutrient transport and transformation by pool-breeding amphibians in forested landscapes using a 21-year dataset. Freshw Biol. doi:10.1111/fwb.12470

    Google Scholar 

  • Casper P, Maberly SC, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1–19

    Article  Google Scholar 

  • Christensen TR, Johansson T, Olsrud M, Ström L, Lindroth A, Mastepanov M, Malmer N, Friborg T, Crill P, Callaghan TV (2007) A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philos Trans R Soc A Math Phys Eng Sci 365:1643–1656

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Water Environment Federation, Washington

    Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  Google Scholar 

  • Cole JJ, Bade DL, Bastviken D, Pace ML, Van de Bogert M (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285–293

    Article  Google Scholar 

  • Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29:9–24

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Einola E, Rantakari M, Kankaala P, Kortelainen P, Ojala A, Pajunen H, Mäkelä S, Arvola L (2011) Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J Geophys Res Biogeosci 116:G03009

    Article  Google Scholar 

  • Eugster W, Kling G, Jonas T, McFadden JP, Wüest A, MacIntyre S, Chapin FS (2003) CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. J Geophys Res Atm 108:4362

    Article  Google Scholar 

  • Hamilton JD, Kelly CA, Rudd JWM, Hesslein RH, Roulet NT (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). J Geophys Res 99:1495–1510

    Article  Google Scholar 

  • Ho DT, Bliven LF, Wanninkhof RIK, Schlosser P (1997) The effect of rain on air-water gas exchange. Tellus B 49:149–158

    Article  Google Scholar 

  • Ho DT, Asher WE, Bliven LF, Schlosser P, Gordan EL (2000) On mechanisms of rain-induced air-water gas exchange. J Geophys Res Oceans 105:24045–24057

    Article  Google Scholar 

  • Hope D, Kratz TK, Riera JL (1996) Relationship between PCO2 and dissolved organic carbon in northern Wisconsin lakes. J Environ Qual 25:1442–1445

    Article  Google Scholar 

  • Humborg C, Mörth C-M, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V (2010) CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–1978

    Article  Google Scholar 

  • Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621

    Article  Google Scholar 

  • Jonsson A, Karlsson J, Jansson M (2003) Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6:224–235

    Article  Google Scholar 

  • Jonsson A, Algesten G, Bergström AK, Bishop K, Sobek S, Tranvik LJ, Jansson M (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150

    Article  Google Scholar 

  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223

    Article  Google Scholar 

  • Kankaala P, Huotari J, Tulonen T, Ojala A (2013) Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape. Limnol Oceanogr 58:1915–1930

    Article  Google Scholar 

  • Karlsson J (2007) Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116:1691–1696

    Article  Google Scholar 

  • Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU (2001) Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46:1054–1064

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301

    Article  Google Scholar 

  • Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ (2006) Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob Change Biol 12:1554–1567

    Article  Google Scholar 

  • Kosten S, Roland F, Da Motta Marques DML, Van Nes EH, Mazzeo N, Sternberg LdSL, Scheffer M, Cole JJ (2010) Climate-dependent CO2 emissions from lakes. Glob Biogeochem Cycle 24:GB2007

    Article  Google Scholar 

  • Larsen S, Andersen T, Hessen DO (2011) The pCO2 in boreal lakes: organic carbon as a universal predictor? Glob Biogeochem Cycle 25:GB2012

    Google Scholar 

  • Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Lennon JT, Faiia AM, Feng X, Cottingham KL (2006) Relative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient. Limnol Oceanogr 51:1602–1613

    Article  Google Scholar 

  • MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD (2010) Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophys Res Lett 37:L24604

    Article  Google Scholar 

  • McCallister SL, del Giorgio P (2008) Direct measurement of the d13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr 53:1204–1216

    Article  Google Scholar 

  • Meyer JL, Wallace JB, Eggert SL (1998) Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1:240–249

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Natchimuthu S, Panneer Selvam B, Bastviken D (2014) Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119:403–413

    Article  Google Scholar 

  • Palik B, Batzer D, Buech R, Nichols D, Cease K, Egeland L, Streblow D (2001) Seasonal pond characteristics across a chronosequence of adjacent forest ages in northern Minnesota, USA. Wetlands 21:532–542

    Article  Google Scholar 

  • Palik BJ, Buech R, Egeland L (2003) Using an ecological land hierarchy to predict seasonal-wetland abundance in upland forests. Ecol Appl 13:1153–1163

    Article  Google Scholar 

  • Pelletier L, Strachan IB, Garneau M, Roulet NT (2014) Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange. J Geophys Res Biogeosci 119:JG002423

    Article  Google Scholar 

  • Rantakari M, Kortelainen P (2005) Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Glob Change Biol 11:1368–1380

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  • Repo ME, Huttunen JT, Naumov AV, Chichulin AV, Lapshina ED, Bleuten W, Martikainen PJ (2007) Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B 59:788–796

    Article  Google Scholar 

  • Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274

    Article  Google Scholar 

  • Roehm CL, Prairie YT, del Giorgio PA (2009) The pCO2 dynamics in lakes in the boreal region of northern Québec. Canada. Glob Biogeochem Cycle 23:GB3013

    Google Scholar 

  • Roulet NT, Crill PM, Comer NT, Dove A, Boubonniere RA (1997) CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res Atmos 102:29313–29319

    Article  Google Scholar 

  • Rubbo M, Cole J, Kiesecker J (2006) Terrestrial subsidies of organic carbon support net ecosystem production in temporary forest ponds: evidence from an ecosystem experiment. Ecosystems 9:1170–1176

    Article  Google Scholar 

  • Sand-Jensen K, Staehr P (2007) Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems 10:128–142

    Article  Google Scholar 

  • Schneider DW, Frost TM (1996) Habitat duration and community structure in temporary ponds. J N Am Benthol Soc 15:64–86

    Article  Google Scholar 

  • Smith LK, Lewis WM Jr (1992) Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Glob Biogeochem Cycle 6:323–338

    Article  Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycle 19:GB2003

    Article  Google Scholar 

  • Torgersen T, Branco B (2008) Carbon and oxygen fluxes from a small pond to the atmosphere: temporal variability and the CO2/O2 imbalance. Water Resour Res 44:W02417

    Google Scholar 

  • U.S. Department of Agriculture NRCS (1996) Soil survey (SSURGO) for the 7.5 minute quadrangle of Westford. In U.S. Department of Agriculture, Natural Resources Conservation Science, Fort Worth, Texas, USA

  • van Hulzen JB, Segers R, van Bodegom PM, Leffelaar PA (1999) Temperature effects on soil methane production: an explanation for observed variability. Soil Biol Biochem 31:1919–1929

    Article  Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Whitfield CJ, Aherne J, Baulch HM (2011) Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland. Sci Total Environ 410–411:217–225

    Article  Google Scholar 

  • Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360

    Article  Google Scholar 

  • Wu Q, Lane C, Liu H (2014) An effective method for detecting potential woodland vernal pools using high-resolution LiDAR data and aerial imagery. Remote Sens 6:11444–11467

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafr Periglac Process 14:151–160

    Article  Google Scholar 

  • Zhang J, Jiang Y, Gao Y, Wu Y, Luo W, Zhou Z, Wang F (2013) CO2 emission from Dianshan Lake in summer, East China. Chin J Geochem 32:430–435

    Article  Google Scholar 

Download references

Acknowledgments

Thank you to Peter Raymond, David Skelly, and two anonymous reviewers for their thoughtful comments that greatly improved the manuscript. Thank you to Madison Shankle and numerous volunteers for providing field assistance. I am grateful to the Yale Myers Forest team for lodging and use of the study ponds. I am supported by the National Science Foundation Graduate Research Fellowship (DGE-1122492) and the Yale University School of Forestry and Environmental Studies. Research funding came from the Yale Institute for Biospheric Studies and Friends of Chatham Waterways, Massachusetts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith A. Holgerson.

Additional information

Responsible Editor: Mark Brush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holgerson, M.A. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124, 305–318 (2015). https://doi.org/10.1007/s10533-015-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0099-y

Keywords

Navigation