Skip to main content

Advertisement

Log in

Stable isotopic evidence for nitrification and denitrification in a High Arctic glacial ecosystem

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Solute chemistry and stable isotope tracers of NO3 were used to assess bacterial NO3 production and denitrification in a High Arctic glacial ecosystem during 2009. Changes in the NO3 concentration and the δ18O–NO3 in all the proglacial streams revealed that up to 95 % of total NO3 was most likely bacterially-derived during low flow conditions towards the end of the summer (day of year 250). However, overlapping ranges of δ15N values for snow NH4 +, soil organic matter, cryoconite debris and geological nitrogen in host rocks mean that neither the preferred substrate(s), nor the pathway (i.e. nitrification or simple mineralisation) can be discerned. The most plausible explanation for the bacterial production of NO3 is nitrification in snowmelt-fed flowpaths through avalanche fans that flank the glacier and along subglacial drainage pathways at the glacier bed. Interestingly, there was no evidence for denitrification in subglacial outflow, which is contrary to earlier research at this site. Instead, increases in the δ15N–NO3 of up to 20 ‰ downstream of the glacier margin, suggests that denitrification in the glacier forefield and/or the sediments that flank it was most discernable during 2009. Our observations therefore suggest that poorly understood temporal variations in the mixing ratio of nitrifying and denitrifying flowpaths occur in this glacial ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amberger A, Schmidt H-L (1987) Naturliche Isotopengehalte von Nitrat als Indikatoren fur dessen Herkunft. Geochimica et Cosmochimica Acta 51:2699–2705

  • Amoroso A, Beine HJ, Sparapani R, Nardino M, Allegrini I (2006) Observation of coinciding arctic boundary layer ozone depletion and snow surface emissions of nitrous acid. Atmos Environ 40:1949–1956

    Article  Google Scholar 

  • Anderson KK, Hooper AB (1983) O2 and H2O are each the source in one O in NO2—produced from NH3 by Nitrosomonas; 15NNMR evidence. FEBS Lett 164:236–240

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob change biol 15:955–960

    Article  Google Scholar 

  • Anisfeld SC, Barnes RT, Altabet MA, Wu T (2007) Isotopic apportionment of atmospheric and sewage nitrogen sources in two connecticut rivers. Environ Sci Technol 41:6363–6369

    Article  Google Scholar 

  • Barrie LA, Den Hartog G, Bottenheim JW, Landsberger S (1989) Anthropogenic aerosols and gases in the lower troposphere at alert Canada in April 1986. J Atmos Chem 9:101–127

    Article  Google Scholar 

  • Beine HJ, Engardt M, Jaffe Da, Hov Ø, Holmén K, Stordal F (1996) Measurements of NOx and aerosol particles at the Ny-Ålesund Zeppelin mountain-station on svalbard: influence of local and regional pollution sources. Atmos Environ 30(7):1067–1079

    Article  Google Scholar 

  • Björnsson H, Gjessing Y, Hamran SE, Hagen JO, Liestøl O, Pálsson F, Erlingsson B (1996) The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J Glaciol 42:23–32

    Google Scholar 

  • Bottrell SH, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–2368

    Google Scholar 

  • Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M (2011) Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787

    Article  Google Scholar 

  • Casciotti KL, Sigman DM, Galanter Hastings M, Bohlke JK and Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in marine and fresh waters using the denitrifier method. Anal chem 74:4905–4912

    Google Scholar 

  • Casciotti KL, Mcilvin M, Buchwald C (2010) Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr 55:753–762

    Article  Google Scholar 

  • Curtis CJ, Evans C, Goodale CL, Heaton THE (2011) What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 114:1021–1027

    Article  Google Scholar 

  • Day TJ (1977) Observed mixing lengths in mountain streams. J Hydrol 35:125–136

    Article  Google Scholar 

  • Fellman JB, Spencer RGM, Hernes PJ, Edwards RT, Amore DVD, Hood E (2010) The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems, marine chemistry. ISSN 0304-4203. doi:10.1016/j.marchem.2010.03.009

  • Fortner SK, Tranter M, Fountain AG, Lyons B, Welch KA (2005) The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquat Geochem 11:391–412

    Google Scholar 

  • Gooseff MN, Mcknight DM, Runkel RL, Duff JH (2004) Denitrification and hydrologic transient storage in a glacial meltwater stream, Mcmurdo Dry Valleys, Antarctica. Limnol Oceanogr 49:1884–1895

    Article  Google Scholar 

  • Hagen JO, Kohler J, Melvold K, Winther JG (2003) Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res 22:145–159

    Article  Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Article  Google Scholar 

  • Heaton THE, Wynn P, Tye AM (2004) Low 15N/14N ratios for nitrate in snow in the high arctic (79°N). Atmos Environ 38:5611–5621

    Article  Google Scholar 

  • Hodson A (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour Res 42. doi:10.1029/2005WR004311

  • Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005a) The high arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72:233–256

    Article  Google Scholar 

  • Hodson AJ, Kohler J, Brinkhaus M (2005b) Multi-year water and surface energy budget of a high latitude polythermal glacier: evidence for overwinter water storage in a dynamic subglacial reservoir. Ann Glaciol 42:42–46

    Article  Google Scholar 

  • Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn TDL, Dye AR, Clark CD, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res, Biogeosci. Special Edition: Microcosms in Ice: the Biogeochemistry of Cryoconite Holes

  • Hodson AJ, Anesio AM, Tranter M, Fountain AG, Osborn AM, Priscu J, Laybourn-parry j, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hodson AJ, Roberts T, Engvall Ac, Holmén K, Mumford PN (2009a) Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry 98:171–184

    Article  Google Scholar 

  • Hodson A, Heaton THE, Langford H, Newsham K (2009b) Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry 98:9–27

    Article  Google Scholar 

  • Hodson A, Heaton THE, Langford H, Newsham K (2010) Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry. doi:10.1007/s10533-009-9372-2

  • Hollocher TC, Tate ME, Nicholas DJD (1981) Oxidation of ammonia by Nitrosomonas europaea. J Biol Chem 256:10834–10836

    Google Scholar 

  • Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nat Geosci 1:583–587

    Article  Google Scholar 

  • Irvine-Fynn TDL, Hodson AJ, Kohler J, Porter P, Vatne G (2005) Dye tracing experiments at Midtre Lovénbreen, Svalbard: preliminary results and interpretations. In: Mavlyudov BR (ed) Proceedings of the 7th glacier caves and glacial karst in high mountains and polar regions. Institute of the Russian Academy of Sciences, Moscow, pp 36–43

  • Irvine-Fynn TDL, Hodson AJ (2010) Biogeochemistry and dissolved oxygen dynamics at a subglacial upwelling, Midtre Lovenbreen, Svalbard. Ann Glaciol 51:41–46

    Article  Google Scholar 

  • Irvine-Fynn TDL, Hodson AJ, Moorman BJ, Vatne G, Hubbard AL (2011) Polythermal glacier hydrology: a review. Rev Geophys 49:RG4002. doi:10.1029/2010RG000350

  • Kaiser J, Hastings MG, Houlton BZ et al (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, Mcdonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Chapter  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 375–449

    Chapter  Google Scholar 

  • Kool DM, Wrage N, Oenema O, Van Kessel C, Van Groenigen JW (2011) Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biol Biochem 43:1180e–1185e

    Article  Google Scholar 

  • Kühnel R, Roberts TJ, Björkman MP, Isaksson E, Aas W, Holmén K, Ström J (2011) 20-Year climatology of NO3 and NH4 + wet deposition at Ny-Ålesund, Svalbard. Adv Meteorol 10. doi:10.1155/2011/406508

  • Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the west antarctic ice sheet. Environ Microbiol 11:609–615

    Article  Google Scholar 

  • Luz B, Barkan E (2011) The isotopic composition of atmospheric oxygen. Glob Biogeochem Cycles 25:GB3001. doi:10.1029/2010gb003883

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  Google Scholar 

  • Mayer B, Bollwerk SM, Mansfeldt T, Hutter B, Veizer J (2001) The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim Cosmochim Acta 65:2743–2756

    Article  Google Scholar 

  • Mcknight DM, Runkel RL, Tate CM, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23:171–188

    Article  Google Scholar 

  • Moore J, Kekonen T, Grinsted A, Isaksson E (2006) Sulfate source inventories from a Svalbard ice core record spanning the industrial revolution. J Geophys Res 111:d15307. doi:10.1029/2005jd006453

  • Morin S, Savarino J, Frey MM, Domine F, Jacobi H-W, Kaleschke L, Martins JMF (2009) Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65oS to 79oN. J Geophys Res 114:d05303

    Article  Google Scholar 

  • Rippin D, Willis I, Arnold N, Hodson A, Moore J, Kohler J, Björnsson H (2003) Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models. Earth Surf Process Landforms 28:273–298. doi:10.1002/esp.485

    Article  Google Scholar 

  • Roberts TJ, Hodson AJ, Evans CD, Holmen K (2010) Modelling the impacts of a nitrogen pollution event on the biogeochemistry of an Arctic glacier. Ann Glaciol 51(56):163–170

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • Snider DM, Spoelstra J, Schiff SL, Venkiteswaran JJ (2010) Stable oxygen isotope ratios of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and temperate forest soils. Environ Sci Technol 44:5358–5364

    Article  Google Scholar 

  • Solorzano L, Sharp JH (1980) Determination of total dissolved nitrogen in natural waters. Limnol Oceanogr 25(4):751–754

    Article  Google Scholar 

  • Spoelstra J, Schiff SL, Hazlett PW, Jeffries DS, Semkin RG (2007) The isotopic composition of nitrate produced from nitrification in a hardwood forest floor. Geochim Cosmochim Acta 71:3757–3771

    Article  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Irvine-Fynn TDL, Hodson A, Butler CEH, Wadham JL (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res, Biogeosci 116:G03039

    Article  Google Scholar 

  • Tranter M, Brown GH, Hodson A, Gurnell AM (1996) Hydrochemistry as an indicator of the nature of subglacial drainage system structure: a comparison of Arctic and Alpine environments. Hydrol Process 10:541–556

    Google Scholar 

  • Tranter M, Skidmore M, Wadham J (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998

    Google Scholar 

  • Tye AM, Heaton THE (2007) Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on arctic tundra. Geochimica et Cosmochimica Acta 71:4188–4205

    Article  Google Scholar 

  • Wadham JL, Bottrell S, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355

    Article  Google Scholar 

  • Wexler SK, hiscock KM, Dennis PF (2011) Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach. Environ Sci Technol 45:3967–3973

    Article  Google Scholar 

  • Williams MW, Brooks PD, Mosier AR, Tonnessen KA (1996) Mineral N transformations in and under seasonal snow in a high elevation catchment, Rocky Mountains, USA. Water Resour Res 32:3175–3185

    Google Scholar 

  • Wilson TRS (1975) Salinity and the major elements of seawater. In: Rileyand JP, Skirrow G (eds) Chemical oceanography, vol 1, 2nd edn. Academic press, London, pp 365–414

    Google Scholar 

  • Wynn PM, Hodson AJ, Heaton THE (2006) Chemical and isotopic switching within the subglacial environment of a High Arctic glacier. Biogeochemistry 78:173–193

    Article  Google Scholar 

  • Wynn PM, Hodson AJ, Heaton The, Chenery SR (2007) Nitrate production beneath a High Arctic glacier, Svalbard. Chem Geol 244(1–2):88–102

    Article  Google Scholar 

  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleeput O, Berlund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully appreciate Tristram Irvine Fynn, Aga Nowak, Mats Björkman, William Crowe and Laura Campisi for their generous support in the field and laboratory. We are also thankful to the NERC British Arctic Station for providing accommodation, lab facilities and logistical support. This work was supported by NSINK project (EU Marie Curie action plan, project no: R/123386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, A.H., Hodson, A.J., Heaton, T.H.E. et al. Stable isotopic evidence for nitrification and denitrification in a High Arctic glacial ecosystem. Biogeochemistry 113, 341–357 (2013). https://doi.org/10.1007/s10533-012-9761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9761-9

Keywords

Navigation