Skip to main content

Advertisement

Log in

Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

A tool commonly used in wildlife biology is density estimation via camera-trap monitoring coupled with capture–recapture analysis. Reliable regional density estimations of animal populations are required as a basis for management decisions. However, these estimations are affected by the session design, such as the length of the monitoring session, season, and number of trap sites. This method is regularly used to monitor Eurasian lynx (Lynx lynx) which mostly occupy the forested mountain ranges in Central Europe. Here we used intensive field sampling data of a major Central European lynx population to investigate (1) the optimal monitoring session length considering the trade-off between population closure and number of recaptures for density estimates, (2) the optimal time window within the year considering the stability of density estimates, detection probability, recapture number, and reproduction, and (3) the number of trap sites and trap spacing required to achieve robust density estimates. Using two closure tests, we found that 80 days are the minimum to ensure adequate data quality. A spatially explicit capture–recapture model revealed the best monitoring period to be late summer to early winter. Based on our results, we recommend for similar management units of comparable size (~300 km2) and similar recapture numbers to sample for at least 80 days in autumn with traps spaced about every 2.5–3 km. Our results also indicated that stable density estimates could still be maintained when the sampling area is enlarged to 760 km2 with trap spacing every 5–6 km if session lengths are increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bässler C, Förster B, Monning C, Mülller J (2009) The BIOKLIM project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldökologie, Landschaftsforschung und Naturschutz 7:21–33

    Google Scholar 

  • Blanc L, Marboutin E, Gatti S, Gimenez O (2013) Abundance of rare and elusive species: empirical investigation of closed versus spatially explicit capture–recapture models with lynx as a case study. J Wildl Manag 77:372–378

    Article  Google Scholar 

  • Borchers DL, Efford M (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377–385

    Article  CAS  PubMed  Google Scholar 

  • Breitenmoser U, Breitenmoser-Würsten C (2008) Der Luchs: Ein Grossraubtier in der Kulturlandschaft. Salm Verlag, Wohlen/Bern

    Google Scholar 

  • Breitenmoser U, Breitenmoser-Würsten C, Okarma H, Kaphegyi T, Kaphegyi-Wallmann U, Müller UM (2000) The action plan for the conservation of the Eurasian Lynx (Lynx lynx) in Europe. Nat Environ 112:1–70

    Google Scholar 

  • Cagnacci F et al (2011) Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120:1790–1802

    Article  Google Scholar 

  • Carbone C et al (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79

    Article  Google Scholar 

  • Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814

    Article  Google Scholar 

  • Cervený J, Koubek P, Bufka L (2002) Eurasian lynx Lynx lynx and its chance for survival in central Europe: the case of the Czech Republic. Acta Zool Litu 12:362–366

    Article  Google Scholar 

  • Chapron G et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Cop J, Frkovic A (1998) The re-introduction of the lynx in Slovenia and its present status in Slovenia and Croatia. Hystrix 10:65–76

    Google Scholar 

  • De Bondi N, White JG, Stevens M, Cooke R (2010) A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. Wildl Res 37:456–465

    Article  Google Scholar 

  • Dillon A, Kelly MJ (2007) Ocelot Leopardus pardalis in Belize: the impact of trap spacing and distance moved on density estimates. Oryx 41:469–477

    Article  Google Scholar 

  • Dillon A, Kelly M (2008) Ocelot home range, overlap and density: comparing radio telemetry with camera trapping. J Zool 275:391–398

    Article  Google Scholar 

  • Efford M (2004) Density estimation in live trapping studies Oikos 106:598–610

    Google Scholar 

  • Efford MG (2015) secr: spatially explicit capture-recapture models. R package version 2.9.4.

  • Efford M, Dawson D, Robbins C (2004) DENSITY: software for analysing capture-recapture data from passive detector arrays. Anim Biodivers Conserv 27:217–228

    Google Scholar 

  • Efford MG, Dawson DK, Borchers DL (2009) Population density estimated from locations of individuals on a passive detector array. Ecology 90:2676–2682

    Article  PubMed  Google Scholar 

  • Festetics A (1981) Das ehemalige und gegenwärtige Vorkommen des Luchses, Lynx lynx (Linné, 1758) in Europa und seine Wiederansiedlung in eineigen europäischen Ländern Säugetierkundliche Mitteilungen 29:21–77

  • Foster RJ, Harmsen BJ (2012) A critique of density estimation from camera trap data. J Wildl Manag 76:224–236

    Article  Google Scholar 

  • Gardner B, Reppucci J, Lucherini M, Royle JA (2010) Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies. Ecology 91:3376–3383

    Article  PubMed  Google Scholar 

  • Garrote G et al (2011) Estimation of the Iberian lynx (Lynx pardinus) population in the Doñana area, SW Spain, using capture–recapture analysis of camera-trapping data. Eur J Wildl Res 57:355–362

    Article  Google Scholar 

  • Gil-Sánchez JM et al (2011) The use of camera trapping for estimating Iberian lynx (Lynx pardinus) homeranges. Eur J Wildl Res 57:1203–1211

    Article  Google Scholar 

  • Harmsen BJ, Foster RJ, Silver S, Ostro L, Doncaster CP (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133

    Article  Google Scholar 

  • Harmsen BJ, Foster RJ, Doncaster CP (2011) Heterogeneous capture rates in low density populations and consequences for capture-recapture analysis of camera-trap data. Popul Ecol 53:253–259

    Article  Google Scholar 

  • Heilbrun RD, Silvy NJ, Peterson MJ, Tewes ME (2006) Estimating bobcat abundance using automatically triggered cameras. Wildl Soc Bull 34:69–73

    Article  Google Scholar 

  • Herfindal I, Linnell J, Odden J, Birkeland Nilsen E, Andersen R (2005) Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). J Zool 265:63–71

    Article  Google Scholar 

  • Heurich M, Möst L, Schauberger G, Reulen H, Sustr P, Hothorn T (2012) Survival and causes of death of European Roe Deer before and after Eurasian Lynx reintroduction in the Bavarian Forest National Park. Eur J Wildl Res 58:567–578

    Article  Google Scholar 

  • Karanth KU (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol Conserv 71:333–338

    Article  Google Scholar 

  • Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862

    Article  Google Scholar 

  • Karanth KU, Nichols JD (2002) Monitoring tigers and their prey: a manual for researchers, managers, and conservationists in tropical Asia. Centre for Wildlife Studies, Bangalore

    Google Scholar 

  • Karanth KU, Kumar NS, Nichols JD (2002) Field surveys: estimating absolute densities of tigers using capture-recapture sampling. Monitoring tigers and their prey: a manual for researchers, managers and conservationists in Tropical Asia Centre for Wildlife Studies, Bangalore 1:139–152

  • Kawanishi K, Sunquist ME (2004) Conservation status of tigers in a primary rainforest of Peninsular Malaysia. Biol Conserv 120:329–344

    Article  Google Scholar 

  • Kelly MJ, Holub EL (2008) Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeast Nat 15:249–262

    Article  Google Scholar 

  • Kéry M, Schaub M (2012) Bayesian popualtion analysis using WinBUGS—a hierchical perspective, Academic Press, Waltham

  • Krebs CJ (1999) Ecological methodology, vol 620. Benjamin/Cummings Menlo Park, California

    Google Scholar 

  • Laass J (1999) Evaluation von Photofallen für ein quantitatives Monitoring einer Luchspopulation in den Alpen. Universität Wien

  • Larrucea ES, Brussard PF, Jaeger MM, Barrett RH (2007) Cameras, coyotes, and the assumption of equal detectability. J Wildl Manag 71:1682–1689

    Article  Google Scholar 

  • Lausch A, Heurich M, Fahse L (2013) Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol Indic 31:73–81

    Article  Google Scholar 

  • Lehnert LW, Bässler C, Brandl R, Burton PJ, Müller J (2013) Conservation value of forests attacked by bark beetles: highest number of indicator species is found in early successional stages. J Nat Conserv 21:97–104

    Article  Google Scholar 

  • Linkie M, Haidir IA, Nugroho A, Dinata Y (2008) Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol Conserv 141:2410–2415

    Article  Google Scholar 

  • Linnell J, Swenson JE, Andersen R (2000) Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, or keystones? Biodivers Conserv 9:857–868

    Article  Google Scholar 

  • Linnell JDC et al (2007) Distance rules for minimum counts of Eurasian lynx Lynx lynx family groups under different ecological conditions. Wildl Biol 13:447–455

    Article  Google Scholar 

  • Linnell J, Salvatori V, Boitani L (2008) Guidelines for population level management plans for large carnivores in Europe, vol 83

  • Maffei L, Noss AJ (2008) How small is too small? Camera trap survey areas and density estimates for ocelots in the Bolivian Chaco. Biotropica 40:71–75

    Google Scholar 

  • Magg N et al. (in press) Habitat availability is not the factor limiting the distribution of the Bohemian-Bavarian-lynx population. Oryx

  • Marques TA, Thomas L, Royle JA (2011) A hierarchical model for spatial capture-recapture data: comment. Ecology 92:526–528

    Article  PubMed  Google Scholar 

  • Möst L, Hothorn T, Müller J, Heurich M (2015) Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For Ecol Manag 338:46–56

    Article  Google Scholar 

  • Müller J, Wölfl M, Wölfl S, Müller DW, Hothorn T, Heurich M (2014) Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol Conserv 177:210–217

    Article  Google Scholar 

  • Nilsen EB, Brøseth H, Odden J, Linnell JDC (2011) Quota hunting of Eurasian lynx in Norway: patterns of hunter selection, hunter efficiency and monitoring accuracy. Eur J Wildl Res 58:325–333

    Article  Google Scholar 

  • Noss A et al (2012) Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape. Anim Conserv 15:527–535

    Article  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:3–135

    Google Scholar 

  • Parmenter RR et al (2003) Small-mammal density estimation: a field comparison of grid-based vs. web-based density estimators. Ecol Monogr 73:1–26

    Article  Google Scholar 

  • Pesenti E, Zimmermann F (2013) Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J Mammal 94:73–81

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rexstad E, Burnham KP (1991) User’s guide for interactive program CAPTURE. Color. Cooperative Fish and Wildlife Research Unit

  • Rovero F, Zimmermann F, Berzi D, Meek P (2013) “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix 24:148–156

    Google Scholar 

  • Royle JA (2009) Analysis of capture–recapture models with individual covariates using data augmentation. Biometrics 65:267–274

    Article  PubMed  Google Scholar 

  • Royle AJ, Gardner B (2010) Hierarchical spatial capture-recapture models for estimating density from trapping arrays. In: O’ Connell AF, Nichols JD, Karanth UK (eds) Camera traps in animal ecology: methods and analysis. Springer, New York, pp 163–190

    Google Scholar 

  • Silver SC et al (2004) The use of camera traps for estimating jaguar Panthera onca abundance and density using captuer/recapture analysis. Oryx 38:148–154

    Article  Google Scholar 

  • Soisalo M, Cavalcanti S (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biol Conserv 129:487–496

    Article  Google Scholar 

  • Sollmann R, Furtado MM, Gardner B, Hofer H, Jacomo ATA, Tôrres NM, Silveira L (2011) Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol Conserv 144:1017–1024

    Article  Google Scholar 

  • Sollmann R, Gardner B, Belant JL (2012) How does spatial study design influence density estimates from spatial capture-recapture models? PLoS One 7:e34575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sollmann R, Tôrres NM, Furtado MM, de Almeida Jácomo AT, Palomares F, Roques S, Silveira L (2013) Combining camera-trapping and noninvasive genetic data in a spatial capture–recapture framework improves density estimates for the jaguar. Biol Conserv 167:242–247

    Article  Google Scholar 

  • Stanley TR, Burnham KP (1999) A closure test for time-specific capture-recapture data. Environ Ecol Stat 6:197–209

    Article  Google Scholar 

  • Tobler MW, Powell GVN (2013) Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biol Conserv 159:109–118

    Article  Google Scholar 

  • Trolle M, Kéry M (2003) Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data. J Mammal 84:607–614

    Article  Google Scholar 

  • Trolle M, Noss AJ, Cordeiro JLP, Oliveira LFB (2008) Brazilian Tapir density in the Pantanal: a comparison of systematic camera trapping and line transect surveys. Biotropica 40:211–217

    Article  Google Scholar 

  • Wegge P, Pokheral CP, Jnawali SR (2004) Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Anim Conserv 7:251–256

    Article  Google Scholar 

  • Weingarth K, Zimmermann F, Knauer F, Heurich M (2012a) Evaluation of six digital camera models for the use in capture-recapture sampling of Eurasian Lynx (Lynx lynx). For Ecol Landsc Res Nat Prot 13:87–92

    Google Scholar 

  • Weingarth K, Heibl C, Knauer F, Zimmermann F, Bufka L, Heurich M (2012b) First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture-recapture techniques in a German national park. Anim Biodivers Conserv 35:197–207

    Google Scholar 

  • White GC (1982) Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Wilson KR, Anderson DR (1985) Evaluation of two density estimators of small mammal population size. J Mammal 66:13–21

    Article  Google Scholar 

  • Wölfl M et al (2001) Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol 46:181–194

    Article  Google Scholar 

  • Wotschikowsky U, Kaczensky P, Knauer F (2001) Wiederansiedlung des Luchses im Harz. Eine kritische Stellungnahme aus wildbiologischer Sicht. Naturschutz und Landschaftsplanung 33:259–261

    Google Scholar 

  • Zimmermann F, Breitenmoser U (2007) Potential distribution and population size of the Eurasian lynx (Lynx lynx) in the Jura Mountains and possible corridors to adjacent ranges. Wildl Biol 13:406–416

    Article  Google Scholar 

  • Zimmermann F, Molinari-Jobin A, Capt S, Ryser A, Angst C, von Wattenwyl K, Burri A, Breitenmoser-Würsten C, Breitenmoser U (2004) Monitoring Luchs Schweiz 2003, vol 26. KORA, Muri, Bern

    Google Scholar 

  • Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U (2005) Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. J Zool 267:381–395

    Article  Google Scholar 

  • Zimmermann F, Weber JM, Molinari-Jobin A, Ryser A, von Wattenwyl K, Siegenthaler A, Molinari P, Angst C, Breitenmoser-Würsten C, Capt S, Breitenmoser U (2006) Monitoring der Raubtiere in der Schweiz 2005, vol 35. KORA, Muri, Bern

    Google Scholar 

  • Zimmermann F, Breitenmoser-Würsten C, Molinari-Jobin A, Breitenmoser U (2013) Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx Linnaeus, 1758) population in the Swiss Alps by means of photographic capture-recapture. Integr Zool 8:232–243

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Martin Gahbauer for providing his experience and knowledge for the camera-trapping project. We also thank Murray Efford for advice. This study was supported by the World Wide Fund for Nature Section Germany (WWF Germany) and was part of a project on the predator–prey relationships of Eurasian lynx, red deer, and roe deer carried out by the Bavarian Forest National Park and a long-term research project on the Eurasian lynx in the Šumava National Park. Financial support was also provided by EU Program Interreg IV (Objective 3 Czech Republic - the Independent State of Bavaria). Last but not least we are grateful to Karen A. Brune for linguistic supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Weingarth.

Additional information

Communicated by David Hawksworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weingarth, K., Zeppenfeld, T., Heibl, C. et al. Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers Conserv 24, 2935–2952 (2015). https://doi.org/10.1007/s10531-015-0986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0986-5

Keywords

Navigation