Skip to main content

Advertisement

Log in

Phylogenetic diversity of regional beetle faunas at high latitudes: patterns, drivers and chance along ecological gradients

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Patterns in phylogenetic diversity are poorly known for many taxonomic groups, including hyperdiverse insect taxa. We contrasted patterns in the species richness and phylogenetic diversity of provincial beetle faunas in northern Europe (54°N to 71°N). We found that species richness and phylogenetic diversity varied rather predictably along ecogeographical gradients, with species richness and a proxy measure of phylogenetic diversity, average taxonomic distinctness (AvTD), decreasing from south to north and being strongly positively related to maximum temperature. A proxy measure of variation in phylogenetic diversity, variation in taxonomic distinctness (VarTD), was also strongly related to maximum temperature, but the relationship was negative. This was a novel finding, showing a reversed latitudinal gradient in biodiversity. In more than half of the provinces, AvTD value was significantly less than expected by chance. Also, more than half of the provinces showed significantly higher VarTD values than expected based on random draws of species. Our results showed that the phylogenetic diversity of beetle faunas is rather strongly associated with climatic gradients at high latitudes. Given that climatic variability and temperature extremes are correlated with phylogenetic diversity, climate change is likely to modify strongly this facet of diversity. Average phylogenetic diversity is likely to increase in the northernmost parts of the study area if climate and vegetation become more suitable for many southern beetle species. Our statistical approach to test chance expectations based on random draws of species from larger-scale species pool is highly flexible in tackling this question when true phylogenies are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distribution of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393

    Article  Google Scholar 

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Baños-Picón L, Asís JD, Gayubo SF, Tormos J (2009) Analyzing insect community structure through the application of taxonomic distinctness measures. Zool Studies 48:298–314

    Google Scholar 

  • Betzholtz P-E, Petterson LB, Ryrholm N, Franzén M (2012) With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and nitrogen-favoured diet. Proc Royal Soc B. 280:2012–2305

    Article  Google Scholar 

  • Bílý S (1982) The Buprestidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol Scand 10:1–110

    Google Scholar 

  • Bílý S, Mehl O (1989) Longhorn beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark. Fauna Entomol Scand 22:1–203

    Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695

    Article  PubMed Central  PubMed  Google Scholar 

  • Chatrou LW, Wieringa JJ, Couvreur TLP (2010) The impact of climate change on the origin and future of East African rainforest trees. In: Hodkinson TR, Jones MB, Waldren S, Parnell JAN (eds) Climate change, ecology and systematics. Cambridge University Press, Cambridge, pp 304–319

    Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001a) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Progr Ser 216:265–278

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001b) Change in marine communities. An Approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Cowie J (2013) Climate change. Biological and human aspects, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • Danks HV (1992) Arctic insects as indicators of environmental change. Arctic 45:159–166

    Article  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström Å, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Clim Chang 2:121–124

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Diniz-Filho JAF, De Marco Jr P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Ins Cons Divers 3:172–179

    Google Scholar 

  • Fattorini S (2014) Disentangling the effects of available area, mid-domain constraints, and species environmental tolerance on the altitudinal distribution of tenebrionid beetles in a Mediterranean area. Biodivers Conserv 23:2545–2560

    Article  Google Scholar 

  • Fattorini S, Ulrich W (2012a) Drivers of species richness in European Tenebrionidae (Coleoptera). Acta Oecol 36:255–258

    Article  Google Scholar 

  • Fattorini S, Ulrich W (2012b) Spatial distributions of European Tenebrionidae point to multiple postglacial colonization trajectories. Biol J Linn Soc 105:318–329

    Article  Google Scholar 

  • Fordham DA, Akçakaya HR, Araújo M, Brook BW (2013) Modeling range shifts for invasive vertebrates in response to climate change. In: Brodie JF, Post E, Doak D (eds) Wildlife conservation in a changing climate. University of Chicago Press, Chicago, pp 86–108

    Google Scholar 

  • Fox J (2005) The R commander: a basic statistics graphical user interface to R. J Stat Soft 14:1–42

    Google Scholar 

  • Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. J Biogeogr 39:1373–1382

    Article  Google Scholar 

  • Hansen M (1987) The Hydrophiloidea of fennoscandia and Denmark. Fauna Entomol Scand 18:1–254

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2004) ‘Latitude’ and geographic patterns in species richness. Ecography 27:268–272

    Article  Google Scholar 

  • Hawkins BA, Porter EE, Diniz-Filho JAF (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Jaramillo CA, Soeller SA (2007) Climate, niche conservatism and the global bird diversity gradient. Am Nat 170:516–527

    Article  Google Scholar 

  • Heino J (2001) Regional gradient analysis of freshwater biota: do similar biogeographic patterns exist among multiple taxonomic groups?. J Biogeogr 28:69–77

    Article  Google Scholar 

  • Heino J, Alahuhta J (2015) Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J Anim Ecol 84:427–441

    Article  PubMed  Google Scholar 

  • Heino J, Mykrä H, Hämäläinen H, Aroviita J, Muotka T (2007) Responses of taxonomic distinctness and species diversity indices to anthropogenic impacts and natural environmental gradients in stream macroinvertebrates. Freshwat Biol 52:1846–1861

    Article  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  PubMed  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Hidasi-Neto J, Loyola R, Cianciaruso MV (2015) Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers Distr 21(5):548–549

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climat 25:1965–1978

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Holmen M (1987) The aquatic adephaga (Coleoptera) of Fennoscandia and Denmark, Volume I. Gyrinidae, Haliplidae. Hygrobiidae and Noteridae. Fauna Entomol Scand 20:1–168

    Google Scholar 

  • IPCC (2014) Climate Change. Synthesis Report. Available at: http://ipcc.ch/index.htm

  • Kaspari M, O’Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293

    Article  PubMed  Google Scholar 

  • Keil P, Dziock F, Storch D (2008) Geographical patterns of hoverfly (Diptera, Syrphidae) functional groups in Europe: inconsistency in environmental correlates and latitudinal trends. Ecol Entomol 33:748–757

    Google Scholar 

  • Kerr JT, Southwood TRE, Cihlar J (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proc Nat Acad Sci 98:11365–11370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kühn I, Dormann CF (2012) Less than eight (and a half) misconceptions of spatial analysis. J Biogeogr 39:995–998

    Article  Google Scholar 

  • Leather SR (2009) Taxonomic chauvinism threatens the future of entomology. Biologist 56:10–13

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Nat Acad Sci 105:1786–1793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindroth CH (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol Scand 15:1–225

    Google Scholar 

  • Lindroth CH (1986) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol Scand 15:226–497

    Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Luz Ribeiro P, Rapini A, Soares e Silva UC, Ungareti Paleo Konno T, Santos Damascena L, van den Berg C (2012) Spatial analyses of the phylogenetic diversity of Minaria (Apocynaceae): assessing priority areas for conservation in the Espinhaço Range, Brazil. Syst Biodiv 10:317–331

    Article  Google Scholar 

  • Magurran A (2004) Measuring biological diversity. Blackwell Publishing, Malden

    Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Cons Biol 20:538–548

    Article  Google Scholar 

  • Mazel F, Guilhaumon F, Mouquet N, Devictor V, Gravel D, Renaud J, Cianciaruso MV, Loyola R, Diniz-Filho JAF, Mouillot D, Thuiller W (2014) Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob Ecol Biogeogr 23(8):836–847

    Article  PubMed Central  PubMed  Google Scholar 

  • Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier LF, Chave J, Couteron P, Dalecky A, Fontaine C, Gravel D, Hardy OJ, Jabot F, Lavergne S, Leibold M, Mouillot D, Munkemuller T, Pavoine S, Prinzing A, Rodrigues ASL, Rohr RP, Thebault E, Thuiller W (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785

    Article  PubMed  Google Scholar 

  • Nilsson AN, Holmen M (1995) The aquatic adephaga of Fennoscandia and Denmark 2. Dytiscidae. Fauna Entomol Scand 32:1–188

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014). vegan: Community Ecology Package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FPD, Taylor PJ, Schoeman MC, Price BW, Villet MH, Eick G, Salamin N, Guisan A (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Glob Change Biol 20:1538–1549

    Article  Google Scholar 

  • Posadas P, Esquivel DR, Crisci JV (2001) Using phylogenetic diversity measures to set priorities in conservation: an example from southern South America. Biol Cons 15:1325–1334

    Article  Google Scholar 

  • Purvis A, Gittleman JL, Brooks T (Eds) (2005) Phylogeny and conservation. Cambridge University Press, Cambridge

  • Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Nat Acad Sci 98:4534–4539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricklefs RE, Jenkins DG (2011) Biogeography and ecology: towards the integration of two disciplines. Phil Trans Royal Soc B 266:2438–2448

    Article  Google Scholar 

  • Ricklefs RE, Hong Q, White PS (2004) The region effect on mesoscale plant species richness between eastern Asia and eastern North America. Ecography 27:129–136

    Article  Google Scholar 

  • Ricotta C, Bacaro G, Marignani M, Godefroid S, Mazzoleni S (2012) Computing diversity from dated phylogenies and taxonomic hierarchies: does it make a difference to the conclusions? Oecologia 170:501–506

    Article  PubMed  Google Scholar 

  • Rödder D, Schmidtlein S, Schick S, Lötters S (2011) Climate envelope models in systematics and evolutionary research: theory and practice. In: Hodkinson TR, Jones MB, Waldren S, Parnell JAN (eds) Climate change. Cambridge University Press, Ecology and Systematics, pp 243–264

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rull V (2014) Macrorefugia and microrefugia: a response to Tzedakis et al. Trends Ecol Evol 22:243–244

    Article  Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25:25–32

    Article  Google Scholar 

  • Schneeweiss GM, Schönswetter P (2011) A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol Ecol 20:190–192

    Article  PubMed  Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AA, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    Article  PubMed  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  PubMed  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Strecker AL, Olden JD, Whittier JB, Paukert CP (2011) Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol Appl 21:3002–3013

    Article  Google Scholar 

  • Thomas MC (2008) Beetles (Coleoptera). In: Capinera JL (ed) Encyclopedia of entomology, 2nd edn. Springer, Berlin, pp 437–447

    Google Scholar 

  • Thomas CD, France AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534

    Article  CAS  PubMed  Google Scholar 

  • Tolimieri N, Anderson MJ (2010) Taxonomic distinctness of demersal fishes of the California current: moving beyond simple measures of diversity for marine ecosystem-based management. PLoS ONE 5:e10653

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704

    Article  CAS  PubMed  Google Scholar 

  • Väisänen R, Heliövaara K (1994) Hot-spots of insect diversity in northern Europe. Ann Zool Fenn 31:71–81

    Google Scholar 

  • Väisänen R, Heliövaara K, Immonen A (1992) Biogeography of northern European insects: province records in multivariate analysis (Saltatoria, Lepidoptera: Sesiidae; Coleoptera: Bubrestidae, Cerambycidae). Ann Zool Fenn 28:57–81

    Google Scholar 

  • Wang Z, Brown JH, Tang Z, Fang J (2009) Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc Nat Acad Sci 106:1388–1392

    Google Scholar 

  • Warwick RM, Clarke KR (1995) New “biodiversity” measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Progr Ser 129:301–305

    Article  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Academy of Finland for financial support, and Maija Lantto and Riikka Savolainen for compiling the beetle data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Heino.

Additional information

Communicated by Dirk Sven Schmeller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heino, J., Alahuhta, J. & Fattorini, S. Phylogenetic diversity of regional beetle faunas at high latitudes: patterns, drivers and chance along ecological gradients. Biodivers Conserv 24, 2751–2767 (2015). https://doi.org/10.1007/s10531-015-0963-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0963-z

Keywords

Navigation