Skip to main content
Log in

Quantifying the seed bank of an invasive grass in the sub-Antarctic: seed density, depth, persistence and viability

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A native to Europe, Poa annua now has a cosmopolitan distribution and is invasive in the sub-Antarctic. As a major weed in temperate turf, there has been considerable investment in research of the species, but little is known about its ecology in the sub-Antarctic, particularly its reproductive ecology and population dynamics. We characterised the seed bank of this invasive species in the sub-Antarctic, by quantifying seed density, depth, persistence and viability. Poa annua seed bank density was correlated with elevation, animal disturbance, soil wetness and soil depth, but most strongly with P. annua cover. Seed bank density was greatest (132,000 seeds m−2) at low altitude coastal sites where P. annua is abundant but declined with increasing altitude to <2600 seeds m2. Seed was most abundant within the top 3 cm of the soil and decreased with soil depth. Seed viability declined over time, from an initial viability of 81 to <3 % after 2 years in the soil. This study demonstrates that whilst P. annua seed banks can be dense, the seed bank is shallow (<10 cm) with low persistence and viability. This first detailed study on the in situ seed bank profile of P. annua in the sub-Antarctic helps us understand the distribution and persistence of this invasive weed and is essential information for the development and implementation of future management. These findings, such as low seed bank persistence, challenge current thinking about eradication or control feasibility in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar MR, Sala OE (1994) Competition, facilitation, seed distribution and the origin of patches in a Patagonian Steppe. Oikos 70:26–34. doi:10.2307/3545695

    Article  Google Scholar 

  • Akinola MO, Thompson K, Hillier SH (1998) Development of soil seed banks beneath synthesized meadow communities after seven years of climate manipulations. Seed Sci Res 8:493–500. doi:10.1017/S0960258500004463

    Article  Google Scholar 

  • Arroyo M, Cavieres LA, Castor C, Humaña AM (1999) Persistent soil seed bank and standing vegetation at a high alpine site in the central Chilean Andes. Oecologia 119:126–132. doi:10.1007/s004420050768

    Article  Google Scholar 

  • Australian Antarctic Data Centre (2005) Map 13143: location of Macquarie Island in relation to Australia and Antarctica [black and white]. Australian Antarctic Division, Australia

    Google Scholar 

  • Barcikowski A, Lyżwińska R, Zarzycki K (1999) Growth rate and biomass production of Deschampsia antarctica Desv. in the Admiralty Bay Region, South Shetland Islands, Antarctica. Pol Polar Res 20:301–311

    Google Scholar 

  • Beard J (1970) An ecological study of annual bluegrass. US Golf Assoc Green Sect Rec 8:13–18

    Google Scholar 

  • Beard JB, Rieke PE, Turgeon AJ, Vargas JMJ (1978) Annual bluegrass (Poa annua L.): description, adaptation, culture and control. In: Michigan State University, Agricultural Experiment Station Research Report. # 352. Michigan State University Agricultural Experiment Station, East Lansing

  • Benvenuti S, Macchia M, Miele S (2001) Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci 49:528–535. doi:10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2

    Article  CAS  Google Scholar 

  • Bergstrom D, Selkirk P (1999) Bryophyte propagule banks in a feldmark on subantarctic Macquarie Island. Arct Antarct Alp Res 31:202–208. doi:10.2307/1552610

    Article  Google Scholar 

  • Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81. doi:10.1111/j.1365-2664.2008.01601.x

    Article  Google Scholar 

  • Breuninger J (1993) Poa annua control in Bentgrass greens. Golf Course Manag 61:68–73

    Google Scholar 

  • Callahan LM, McDonald ER (1992) Effectiveness of bensulide in controlling two annual bluegrass (Poa annua) subspecies. Weed Technol 6:97–103

    CAS  Google Scholar 

  • Chambers JC, MacMahon JA (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annu Rev Ecol Syst 25:263–292. doi:10.2307/2097313

    Article  Google Scholar 

  • Chambers JC, MacMahon JA, Haefner JH (1991) Seed entrapment in alpine ecosystems: effects of soil particle size and diaspore morphology. Ecology 75:1668–1677. doi:10.2307/1940966

    Article  Google Scholar 

  • Chang ER, Jefferies RL, Carleton TJ (2001) Relationship between vegetation and soil seed banks in an Arctic coastal marsh. J Ecol 89:367–384. doi:10.2307/3072282

    Article  Google Scholar 

  • Christians N (2006) Control options: What’s next for Poa annua control? Grounds Maint 41:28–30

    Google Scholar 

  • Chwedorzewska K, Gielwanowska I, Olech M, Molina-Montenegro MA, Wódkiewicz M, Galeria H (2015) Poa annua L. in the maritime Antarctic: an overview. Polar Rec 261:637–643. doi:10.1017/S0032247414000916

    Article  Google Scholar 

  • Commonwealth of Australia (2014) Heard Island and McDonald Islands marine reserve management plan 2014–2024. Department of the Environment, Canberra

    Google Scholar 

  • Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc R Soc Tasman 143:33–44

    Google Scholar 

  • Convey P, Frenot Y, Gremmen N, Bergstrom DM (2006) Biological invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 193–220. doi:10.1007/1-4020-5277-4_10

  • Cooper J, Cuthbert R, Gremmen N, Ryan PG, Shaw JD (2011) Earth, fire and water: applying novel techniques to eradicate the invasive plant, procumbent pearlwork Sagina procumbens, on Gough Island, a World Heritage Site in the South Atlantic. In: Veitch CR, Clout MN, Towns, DR (eds) Island invasives: eradication and management: proceedings of the international conference on island invasives, Auckland, New Zealand, pp 162–165

  • Copson GR (1984) An annotated atlas of the vascular flora on Macquarie Island. ANARE Res Notes 18:1-70

    Google Scholar 

  • Copson G, Whinam J (2001) Review of ecological restoration programme on subantarctic Macquarie Island: pest management progress and future directions. Ecol Manag Restor 2:129–138. doi:10.1046/j.1442-8903.2001.00076.x

    Article  Google Scholar 

  • Core Team R (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dawson JH, Bruns VF (1975) Longevity of barnyardgrass, green foxtail, and yellow foxtail seeds in soil. Weed Sci 23:437–440. doi:10.2307/4042354

    Google Scholar 

  • de Salas M, Baker M (2015) A census of the vascular plants of Tasmania and index to the student’s flora of Tasmania and flora of Tasmania online. Tasmanian Herbarium, Tasmanian Museum and Art Gallery, Hobart

    Google Scholar 

  • de Villiers MS, Cooper J, Carmichael N, Glass JP, Liddle GM, McIvor E, Micol T, Roberts A (2006) Conservation management at Southern Ocean islands: towards the development of best-practice guidelines. Polarforschung 75:113–131. doi:10.1007/s003000050423

    Google Scholar 

  • Egley GH, Chandler JM (1978) Germination and viability of weed seeds after 2.5 years in a 50-year buried seed study. Weed Sci 26:230–239. doi:10.2307/4042705

    Google Scholar 

  • Egley GH, Chandler JM (1983) Longevity of weed seeds after 5.5 years in the Stoneville 50-year buried-seed study. Weed Sci 31:264–270. doi:10.2307/4043807

    Google Scholar 

  • Ellis WM, Lee BTO, Calder DM (1971) A biometric analysis of populations of Poa annua L. Evolution 25:29–37. doi:10.2307/2406497

    Article  Google Scholar 

  • Erskine PD, Bergstrom DM, Schmidt S, Stewart GR, Tweedie CE, Shaw JD (1998) Subantarctic Macquarie Island: a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117:187–193. doi:10.2307/4222149

    Article  Google Scholar 

  • Fenner M (1985) Seed Ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Fenner M (ed) (2000) Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn. CABI Publishing, Wallingford

    Google Scholar 

  • Frenot Y, Gloaguen J-C (1994) Reproductive performance of native and alien colonizing phanerogams on a glacier foreland, Iles Kerguelen. Polar Biol 14:473–481. doi:10.1007/bf00239052

    Article  Google Scholar 

  • Frenot Y, Gloaguen JC, Tréhen P (1997) Climate change in Kerguelen Islands and colonization of recently deglaciated areas by Poa kerguelensis and Poa annua. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge

    Google Scholar 

  • Frenot Y, Aubry M, Misstet MT, Gloaguen JC, Gourret JP, Lebouvier M (1999) Phenotypic plasticity and genetic diversity in Poa annua L. (Poaceae) at Crozet and Kerguelen Islands (subantarctic). Polar Biol 22:302–310. doi:10.1007/s003000050423

    Article  Google Scholar 

  • Frenot Y, Gloaguen JC, Masse L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasion in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50. doi:10.1016/S0006-3207(01)00052-0

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72. doi:10.1017/S1464793104006542

    Article  PubMed  Google Scholar 

  • Gioria M, Osborne B (2010) Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol Invasions 12:1671–1683. doi:10.1007/s10530-009-9580-7

    Article  Google Scholar 

  • Gioria M, Jarosik V, Pyšek P (2014) Impact of invasions by alien plants on soil seed bank communties: emerging patterns. Perspect Plant Ecol Evol Syst 16:132–142. doi:10.1017/S0032247414000916

    Article  Google Scholar 

  • Gleichsner JA, Appleby AP (1989) Effect of depth and duration of seed burial on ripgut brome (Bromus rigidus). Weed Sci 37:68–72. doi:10.2307/4044758

    Google Scholar 

  • Graham DJ, Hutchings MJ (1988) Estimation of the seed bank of a chalk grassland ley established on former arable land. J Appl Ecol 25:241–252. doi:10.2307/2403622

    Article  Google Scholar 

  • Grundy AC, Jones NE (2002) Weed Management Handbook. Blackwell Science Ltd, Osney

    Google Scholar 

  • Grundy AC, Mead A, Burston S (2003) Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. J Appl Ecol 40:757–770. doi:10.1046/j.1365-2664.2003.00836.x

    Article  Google Scholar 

  • Guo Q, Rundel PW, Goodall DW (1998) Horizontal and vertical distribution of desert seed banks: patterns, causes, and implications. J Arid Environ 38:465–478. doi:10.1006/jare.1997.0353

    Article  Google Scholar 

  • Hautier Y, Randin CF, Stocklin J, Guisan A (2009) Changes in reproductive investment with altitude in an alpine plant. J Plant Ecol-UK 2:125–134. doi:10.1093/jpe/rtp011

    Article  Google Scholar 

  • Heide OM (2001) Flowering responses of contrasting ecotypes of Poa annua and their putative ancestors Poa infirma and Poa supina. Ann Bot 87:795–804. doi:10.1006/anbo.2001.1406

    Article  Google Scholar 

  • Hejda M, Pyšek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. doi:10.1111/j.1365-2745.2009.01480.x

    Article  Google Scholar 

  • Hobbs R, Humphries S (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770. doi:10.1046/j.1523-1739.1995.09040761.x

    Article  Google Scholar 

  • Holmes PM (2002) Depth distribution and composition of seed-banks in alien-invaded and uninvaded fynbos vegetation. Austral Ecol 27:110–120. doi:10.1046/j.1442-9993.2002.01164.x

    Article  Google Scholar 

  • Hughes KA, Convey P (2012) Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica—current knowledge, methodology and management action. J Enviro Manage 93:52–66. doi:10.1016/j.jenvman.2011.08.017

    Article  Google Scholar 

  • Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891. doi:10.1007/s10530-009-9508-2

    Article  Google Scholar 

  • Hughes K, Pertierra L, Molina-Montenegro M, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055. doi:10.1007/s10531-015-0896-6

    Article  Google Scholar 

  • Hunter R, Grant SA (1971) The effect of altitude on grass growth in East Scotland. J Appl Ecol 8:1–19. doi:10.2307/2402123

    Article  Google Scholar 

  • Hutchinson CS, Seymour GB (1982) Poa annua L. J Ecol 70:887–901. doi:10.2307/2260111

    Article  Google Scholar 

  • Lush WM (1988) Biology of Poa annua in a temperate zone golf putting green (Agrostis stolonifera/Poa annua). II. The seed bank. J Appl Ecol 25:989–997. doi:10.2307/2403760

    Article  Google Scholar 

  • McGeoch MA, Shaw JD, Terauds A, Lee JE, Chown SL (2015) Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environ Chang 32:108–125. doi:10.1016/j.gloenvcha.2014.12.012

    Article  Google Scholar 

  • Mengistu LW (1999) Genetic diversity and herbicide resistance in annual bluegrass (Poa annua L.). Oregon State University, Oregon

    Google Scholar 

  • Mennan H, Zandstra B (2006) The effects of depth and duration of seed burial on viability, dormancy, germination, and emergence of ivyleaf speedwell (Veronica hederifolia). Weed Technol 20:438–444. doi:10.1614/WT-05-090R.1

    Article  Google Scholar 

  • Miller SD, Nalewaja JD (1990) Influence of burial depth on wild oats (Avena fatua) seed longevity. Weed Technol 4:514–517. doi:10.2307/3987500

    Google Scholar 

  • Mitich LW (1998) Annual bluegrass (Poa annua L.). Weed Technol 12:414–416

    Google Scholar 

  • Molina-Montenegro MA, Carrasco-Uraa F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurence of the non-native annual blugrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723. doi:10.1111/j.1523-1739.2012.01865.x

    Article  PubMed  Google Scholar 

  • Molina-Montenegro MA, Carrasco-Uraa F, Acuna-Rodrigues I, Oses R, Torres-Diaz C, Chwedorzewska KJ (2014) Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Res 33:214–225. doi:10.3402/polar.v33.21425

    Article  Google Scholar 

  • Molina-Montenegro M, Pertierra L, Razeto-Barry P, Díaz J, Finot V, Torres-Díaz C (2015) A recolonization record of the invasive Poa annua in Paradise Bay, Antarctic Peninsula: modeling of the potential spreading risk. Polar Biol 38:1091–1096. doi:10.1007/s00300-015-1668-1

    Article  Google Scholar 

  • Molina-Montenegro MA, Galleguillos C, Oses R, Acuna-Rodriguez I, Lavin P, Gallardo-Cerda J, Torres-Diaz C, Diex B, Pizarro GE, Atalo C (2016) Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biol Invasions 18:603–618. doi:10.1007/s/10530-015-1033-x

    Article  Google Scholar 

  • Moore JM, Wein RW (1977) Viable seed populations by soil depth and potential site recolonization after disturbance. Can J Bot 55:2408–2412. doi:10.1139/b77-274

    Article  Google Scholar 

  • Moravcova L, Pyšek P, Jarosik V, Pergl J (2015) Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10:e0123634. doi:10.1371/journal.pone.0123634

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson JF, Chew RM (1977) Factors affecting seed reserves in the Mojave Desert ecosystem, Rock Valley, Nye County, Nevada. Am Midl Nat 97:300–320

    Article  Google Scholar 

  • Panetta F, Timmins S (2004) Evaluating the feasibility of eradication for terrestrial weed incursions. Plant Prot Q 19:5–11

    Google Scholar 

  • Parks and Wildlife Service (2006) Macquarie Island nature reserve and world heritage area management plan. Parks and Wildlife Service, Department of Tourism Arts and the Environment, Hobart

    Google Scholar 

  • Pertierra LR, Lara F, Benayas J, Hughes KA (2013) Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biol 36:1473–1481. doi:10.1007/s00300-013-1367-8

    Article  Google Scholar 

  • Peters J (ed) (2000) Tetrazolium Testing Handbook: Contribution No. 29 to the Handbook on Seed Testing, revised 2000. AOSA, Las Cruces

  • Pyšek P, Richardson D (2008) Invasive Plants. Elsevier, Oxford

    Google Scholar 

  • Rejmanek M, Richardson D (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi:10.2307/2265768

    Article  Google Scholar 

  • Reuss SA, Buhler DD, Gunsolus JL (2001) Effects of soil depth and aggregate size on weed seed distribution and viability in a silt loam soil. Appl Soil Ecol 16:209–217. doi:10.1016/S0929-1393(00)00115-3

    Article  Google Scholar 

  • Schafer DE, Chilcote DO (1970) Factors influencing persistence and depletion in buried seed populations. II. The effects of soil temperature and moisture. Crop Sci 10:342–345. doi:10.2135/cropsci1970.0011183X001000040007x

    Article  Google Scholar 

  • Scott JJ, Kirkpatrick JB (1994) Effects of human trampling on the sub-Antarctic vegetation of Macquarie Island. Polar Rec 30:207–220. doi:10.1017/S003224740002427X

    Article  Google Scholar 

  • Scott JJ, Kirkpatrick JB (2008) Rabbits, landslips and vegetation change on the coastal slopes of subantarctic Macquarie Island, 1980-2007: implications for management. Polar Biol 31:409–419. doi:10.1007/s00300-007-0367-y

    Article  Google Scholar 

  • Scott JJ, Kirkpatrick JB (2013) Changes in the cover of plant species associated with climate change and grazing pressure on the Macquarie Island coastal slopes, 1980–2009. Polar Biol 36:127–136. doi:10.1007/s00300-012-1243-y

    Article  Google Scholar 

  • Selkirk P, Seppelt R, Selkirk D (1990) Subantarctic Macquarie Island: Environment and Biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Selkirk-Bell JM, Selkirk PM (2013) Vegetation-banked terraces on subantarctic Macquarie Island: a reappraisal. Arct Antarct Alp Res 45:261–274. doi:10.1657/1938-4246-45.2.261

    Article  Google Scholar 

  • Shaw JD (2013) Southern Ocean Islands invaded: Conserving biodiversity in the world’s last true wilderness. In: Foxcroft L, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas: PATTERNS, problems and challenges. Invading nature—Springer Series in invasion ecology, vol 7. Springer, Berlin, pp 449–472

    Chapter  Google Scholar 

  • Shaw JD, Spear D, Greve M, Chown SL (2010) Taxonomic homogenization and differentiation across Southern Ocean Islands differ among insects and vascular plants. J Biogeog 37:217–228. doi:10.1111/j.1365-2699.2009.02204.x

    Article  Google Scholar 

  • Shaw JD, Terauds A, Bergstrom DM (2011) Rapid commencement of ecosystem recovery following aerial baiting on sub-Antarctic Macquarie Island. Ecol Manag Restor 12:241–244. doi:10.1111/j.1442-8903.2011.00611.x

    Article  Google Scholar 

  • Steinke K, Stier J (2002) Tolerance of supina bluegrass to pre and post-emergence herbicides. J Environ Hortic 20:118–121

    Google Scholar 

  • Taylor BW (1955) The flora, vegetation and soils of Macquarie Island. Australian National Antarctic Research Expeditions Reports, B (2) No. 19. Botany, Hobart

  • Terauds A, Doube J, McKinlay J, Springer K (2014) Using long-term population trends of an invasive herbivore to quantify the impact of management actions in the sub-Antarctic. Polar Biol 37:833–843. doi:10.1007/s00300-014-1485-y

    Article  Google Scholar 

  • Till-Bottraud I, Wu L, Harding J (1990) Rapid evolution of life history traits in populations of Poa annua L. J Evol Biol 3:205–224. doi:10.1046/j.1420-9101.1990.3030205.x

    Article  Google Scholar 

  • Tweedie CE, Bergstrom D (2000) A climate change scenario for surface air temperature at subantarctic Macquarie Island. Paper presented at the Proceedings of the VII SCAR international biology symposium, Christchurch, New Zealand, 31st October–4th September

  • van Tooren BF (1988) The fate of seeds after dispersal in Chalk Grassland: the role of the bryophyte layer. Oikos 53:41–48. doi:10.2307/3565661

    Article  Google Scholar 

  • Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi:10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  • Visser P, Louw H, Cuthnert R (2010) Strategies to eradicate the invasive plant procumbent pearlwort Sagina procumbens on Gough Island, Tristan da Cunha. Conserv Evid 7:116–122

    Google Scholar 

  • Vranjic JA, Groves RH, Willis AJ (2000) Environmental weed management systems. In: Sindel BM (ed) Australian weed management systems. RG and FJ Richardson, Melbourne

    Google Scholar 

  • Walton DWH (1975) European weeds and other alien species in the sub-Antarctic. Weed Res 15:271–282. doi:10.1111/j.1365-3180.1975.tb01135.x

    Article  Google Scholar 

  • Warwick S (1979) The biology of Canadian weeds: 37 Poa annua L. Can J Plant Sci 59:1053–1066. doi:10.4141/cjps79-165

    Article  Google Scholar 

  • Whinam J, Fitzgerald N, Visoiu M, Copson G (2014) Thirty years of vegetation dynamics in response to a fluctuating rabbit population on sub-Antarctic Macquarie Island. Ecol Manag Restor 15:41–51. doi:10.1111/emr.12076

    Article  Google Scholar 

  • Williams L, Kristiansen P, Shaw JD, Sindel BM, Wilson SC (2013) Weeds down under: invasion of the sub-Antarctic wilderness of Macquarie Island. Plant Prot Q 28:71–72

    Google Scholar 

  • Wódkiewicz M, Galera H, Chwedorzewska KJ, Gielwanowska I, Olech M (2013) Diaspores of the introduced species Poa annua L. in soil samples from King George Island (South Shetlands, Antarctica). Arct Antarct Alp Res 45:1–5. doi:10.1657/1938-4246-45.3.415

    Article  Google Scholar 

  • Wódkiewicz M, Ziemianski M, Kwiecien K, Chwedorzewska K, Galera H (2014) Spatial structure of the soil seed bank of Poa annua L.—alien species in the Antarctica. Biodivers Conserv 23:1339–1346. doi:10.1007/s10531-014-0668-8

    Article  Google Scholar 

  • Wu L, Till-Bottraud I, Torres A (1987) Genetic differentiation in temperature-enforced seed dormancy among golf course populations of Poa annua L. New Phytol 107:623–631. doi:10.1111/j.1469-8137.1987.tb02932.x

    Article  Google Scholar 

  • Zorner PS, Zimdahl RL, Schweizer EE (1984) Effect of depth and duration of seed burial on kochia (Kochia scoparia). Weed Sci 32:602–607. doi:10.2307/4043975

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Australian Antarctic Science Program, project AAS 4158 and an Australian Postgraduate Award through the University of New England. We thank the Tasmanian Parks and Wildlife Service for granting us access to Macquarie Island, the Australian Antarctic Division for logistical support and Luis Rodriguez Pertierra for field support. We thank Dr. Dana Bergstrom and two anonymous reviewers for feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L.K., Kristiansen, P., Sindel, B.M. et al. Quantifying the seed bank of an invasive grass in the sub-Antarctic: seed density, depth, persistence and viability. Biol Invasions 18, 2093–2106 (2016). https://doi.org/10.1007/s10530-016-1154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1154-x

Keywords

Navigation