Skip to main content
Log in

Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive predators may change their own trophic conditions by progressively displacing or reducing diversity and abundance of native prey. As food quality and quantity are two main factors determining adult body size in arthropods, alteration of the available resources may thus affect predators’ morphology. The flightless carabid beetle Merizodus soledadinus was accidentally introduced to Iles Kerguelen in a single site in 1913. Its successful spreading process has been monitored over the long term, providing an exceptional research opportunity with multiple snapshots of similar colonized sites mostly differing by the residence time of M. soledadinus. To test if M. soledadinus’ morphology is correlated with its residence time in each habitat, we measured nine morphometric traits in five populations. We detected significant morphological differences: individuals from the first colonized site were the smallest, whereas individuals from the most recently colonized site were the largest. Our study also highlighted among-site variation in sexual dimorphism of the last abdominal sternite: its length differed between sites for females, but not for males. We discuss this diminution of M. soledadinus’ size in the light of both a priori (development under diet restriction, survival) and a posteriori (intrapopulation competition, cannibalism) effects on growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Angilletta J, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342

    Article  PubMed  Google Scholar 

  • Arthur AL, Weeks AR, Sgrò CM (2008) Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J Evol Biol 21:1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Atchley WR (1971) A comparative study of the causes and significance of morphological variation in adults and pupae of Culicoides: a factor analysis and multiple regression study. Evolution 25:563–583

    Article  Google Scholar 

  • Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369–378

    Article  Google Scholar 

  • Berven KA, Gill DE (1983) Interpreting geographic variation in life-history traits. Integr Comp Biol 23:85–97

    Article  Google Scholar 

  • Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 38:502–512

    Google Scholar 

  • Blanckenhorn WU (1998) Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution 52:1394–1407

    Article  Google Scholar 

  • Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol 75:385–487

    Article  CAS  PubMed  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  Google Scholar 

  • Blanckenhorn WU, Stillwell CR, Young KA, Fox CW, Ashtons KG (2006) When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution 60:2004–2011

    PubMed  Google Scholar 

  • Boggs CL, Freeman KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144:353–361

    Article  PubMed  Google Scholar 

  • Bommarco R (1998) Reproduction and energy reserves of a predatory carabid beetle relative to agroecosystem complexity. Ecol Appl 8:846–853

    Article  Google Scholar 

  • Butler MG (1986) Life history of aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 24–35

    Google Scholar 

  • Cabanita R, Atkinson D (2006) Seasonal time constraints do not explain exceptions to the temperature size rule in ectotherms. Oikos 114:431–440

    Article  Google Scholar 

  • Chevrier M (1996) Introduction de deux espèces d’insectes aux Îles Kerguelen: processus de colonisation et exemples d’interactions. Ph.D thesis, Université de Rennes 1, France, p 187

  • Chevrier M, Vernon P, Frenot Y (1997) Potential effects of two alien insects on a subantarctic wingless fly in the Kerguelen Islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431

    Google Scholar 

  • Chown SL, Klok CJ (2003) Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26:445–455

    Article  Google Scholar 

  • Chown SL, Nicholson SW (2004) Letal temperatura limits. In: Chown SL, Nicholson SW (eds) Insect physiological ecology: mechanisms and patterns. Oxford University Press, Oxford, pp 115–153

    Chapter  Google Scholar 

  • Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B 274:2531–2537

    Article  PubMed  Google Scholar 

  • Currie CR, Spence JR, Niemelä J (1996) Competition, cannibalism and intraguild predation among ground beetles (Coleoptera:Carabidae): a laboratory study. Coleopts Bull 50:135–148

    Google Scholar 

  • Day KE, Kirby RS, Reynoldson TB (1994) Sexual dimorphism in Chironomus riparius (Meigen): impact on interpretation of growth in whole-sediment toxicity tests. Environ Toxicol Chem 13:35–39

    Google Scholar 

  • den Nijs LJMF, Lock CAM, Noorlander J, Booij CJH (1996) Search for quality parameters to estimate the condition of Pterostichus cupreus (Col., Carabidae) in view of population dynamic modelling. J Appl Entomol 120:147–151

    Article  Google Scholar 

  • Dong Q, Polis GA (1992) The dynamics of cannibalistic populations: a foraging perspective. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford Scientific Publications, Oxford, pp 13–37

    Google Scholar 

  • Dongen SV (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 19:552–563

    Article  Google Scholar 

  • Eberhard WG (1998) Sexual behavior of Acanthocephala declivis guatemalana (Hemiptera:Coreidae) and the allometric scaling of their modified hind legs. Ann Entomol Soc Am 91:863–871

    Google Scholar 

  • Ernsting G (1993) Observations on life cycle and feeding ecology of two recently introduced predatory beetle species at South Georgia, sub-Antarctic. Polar Biol 13:423–428

    Article  Google Scholar 

  • Fairbairn DJ (1997) Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst 28:659–687

    Article  Google Scholar 

  • Garnier S, Magniez-Janin F, Rasplus JY, Alibert P (2005) When morphometry meets genetics: inferring the phylogeography of Carabus solieri using Fourier analyses of pronotum and male genitalia. J Evol Biol 18:269–280

    Article  CAS  PubMed  Google Scholar 

  • Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32

    Article  Google Scholar 

  • Gruner DS (2003) Regressions of length and width to predict arthropod biomass in the Hawaiian Islands. Pac Sci 57:325–336

    Article  Google Scholar 

  • Hallas R, Schiffer M, Hoffmann AA (2002) Clinal variation in Drosophila serrata for stress resistance and body size. Genet Res 79:141–148

    Article  PubMed  Google Scholar 

  • Hodar JA (1996) The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol 17:421–433

    Google Scholar 

  • Jarosik V (1989) Mass vs. length relationship for carabid beetles (Col., Carabidae). Pedobiologia 33:87–90

    Google Scholar 

  • Jeannel R (1940) Croisière du Bougainville aux îles australes françaises. III. Coléoptères. Mem du Museum National d’Histoire Naturelle, France, Sér A 14:63–202

    Google Scholar 

  • Juliano SA (1985) The effects of body size on mating and reproduction in Brachinus lateralis (Coleoptera: Carabidae). Ecol Entomol 10:271–280

    Article  Google Scholar 

  • Juliano SA (1986) Food limitation of reproduction and survival for population of Brachinus (Coleoptera:Carabidae). Ecology 67:1036–1045

    Article  Google Scholar 

  • Karino K, Seki N, Chiba M (2004) Larval nutritional environment determines adult size in Japanese horned beetles Allomyrina dichotoma. Ecol Res 19:663–668

    Article  Google Scholar 

  • Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2008) Ecological effects of invasive alien insects. Biol Invasions 11:21–45

    Article  Google Scholar 

  • Krebs JR, Davies NB (1993) An introduction to behavioural ecology. Blackwell Scientific Publications, Oxford, 432 p

    Google Scholar 

  • Lenski RE (1982) The impact of forest cutting on the diversity of ground beetles (Coleoptera:Carabidae) in the southern Appalachians. Ecol Entomol 7:385–390

    Article  Google Scholar 

  • Magura T, Tóthmérész B, Lövei GL (2006) Body size inequality of carabids along an urbanisation gradient. Basic Appl Ecol 7:472–482

    Article  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  • Moczek AP (1998) Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behav Ecol 9:636–641

    Article  Google Scholar 

  • Nice CC, Shapiro AM (1999) Molecular and morphological divergence in the butterfly genus Lycaeides (Leipdoptera: Lycaenidae) in North America: evidence of recent speciation. J Evol Biol 12:936–950

    Article  CAS  Google Scholar 

  • Nijhout HF, Davidowitz G (2003) Developmental perspectives on phenotypic variation: canalization, and fluctuating asymmetry. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford, pp 3–13

    Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life-history traits. Ann Rev Entomol 43:63–83

    Article  CAS  Google Scholar 

  • Pearson DL, Knisley CB (1985) Evidence for food as limiting resource in the life cycle of tiger beetles (Coleoptera:Cicindelidae). Oikos 45:161–168

    Article  Google Scholar 

  • Pearson DL, Stemberger SL (1980) Competition, body size and the relative energy balance of adult tiger beetles (Coleoptera:Cicindelidae). Am Midl Nat 104:373–377

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  • Preziosi RF, Fairbairn DJ (1996) Sexual size dimorphism and selection in the wild in the waterstrider Aquarius remigis: Body size, components of body size and male mating success. J Evol Biol 9:317–336

    Article  Google Scholar 

  • Renault D, Hance T, Vannier G, Vernon P (2003) Is body size an influential parameter in determining the duration of survival at low temperatures in Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae)? J Zool 259:381–388

    Article  Google Scholar 

  • Rosecchi E, Thomas F, Crivelli AJ (2001) Can life-history traits predict the fate of introduced species? A case study of two cyprinid fish in southern France. Freshw Biol 46:845–853

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is body size so important? Cambridge University Press, Cambridge, 241 p

    Google Scholar 

  • Shingleton AW, Frankino WA, Flatt T, Nijhout HF, Emlen DJ (2007) Size and shape: the developmental regulation of static allometry in insects. Bioessays 29:536–548

    Article  PubMed  Google Scholar 

  • Snyder W, Evans E (2006) Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Syst 37:95–122

    Article  Google Scholar 

  • Sota T (1985) Limitation of reproduction by feeding condition in a carabid beetle, Carabus yaconinus. Res Popul Ecol 27:171–184

    Article  Google Scholar 

  • Stern DL, Emlen DJ (1999) The developmental basis for allometry in insects. Development 126:1091–1101

    CAS  PubMed  Google Scholar 

  • Stern DL, Moon A, Martinez del Rio C (1996) Caste allometries in the soldier-producing aphid Pseudoregma alexanderi (Hormaphididae: Aphidoidea). Insectes Soc 43:137–147

    Article  Google Scholar 

  • Svensson B (1977) Life history, energy fluctuations, and sexual differentiation in Ephemera danica (Ephemeroptera), a stream-living mayfly. Oikos 29:78–86

    Article  Google Scholar 

  • Szyszko J (1983) State of Carabidae (Col.) fauna in fresh pine forest and tentative valorisation of this environment. Warsaw Agricultural University Press, Warsaw

    Google Scholar 

  • Tammaru T, Esperk T, Castellanos I (2002) No evidence for costs of being large in females of Orgyia spp. (Lepidoptera Lymantriidae): larger is always better. Oecologia 133:430–438

    Article  Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environments. Springer, Berlin

    Google Scholar 

  • Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Soft 22:1–14

    Google Scholar 

  • Thompson DB (1992) Consumption rates and the evolution of diet-induced plasticity in the head morphology of Melanoplus femurrubrum (Orthoptera: Acrididae). Oecologia 89:204–213

    Google Scholar 

  • Thompson DB (2001) Genotype-environment interaction and the ontogeny of diet-induced phenotypic plasticity in size and shape of Melanoplus femurrubrum (Orthoptera: Acrididae). J Evol Biol 12:38–48

    Article  Google Scholar 

  • Vernon P (1986) Evolution des réserves lipidiques en fonction de l’état physiologique des adultes dans une population expérimentale d’un Diptère subantarctique: Anatalanta aptera Eaton. Bull Soc Ecophysiol 11:95–116

    Google Scholar 

  • Wheeler D (1996) The role of nourishment in oogenesis. Ann Rev Entomol 41:407–431

    Article  CAS  Google Scholar 

  • Wise DH (1979) Effects of an experimental increase in prey abundance upon reproductive rates of two orb-weaving spider species (Araneae: Araneidae). Oecologia 41:289–300

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Institut Polaire Francais (IPEV, programme 136), the CNRS (Zone-Atelier de Recherches sur l’Environnement Antarctique et Subantarctique), and the Agence Nationale de la Recherche (programme EVINCE 2007, Vulnerability of native communities to invasive insects and climate change in sub-Antarctic Islands). This research is linked to the SCAR Evolution and Biodiversity in the Antarctic research programme. We are grateful to Y. Frenot, P. Vernon and two anonymous referees for helpful comments and improvement of earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laparie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laparie, M., Lebouvier, M., Lalouette, L. et al. Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol Invasions 12, 3405–3417 (2010). https://doi.org/10.1007/s10530-010-9739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9739-2

Keywords

Navigation