Skip to main content
Log in

Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arifin AR, Kim SJ, Yim JH, Suwanto A, Kim HK (2013) Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic. J Microbiol Biotechnol 23:661–667

    Article  CAS  PubMed  Google Scholar 

  • Bell PJ, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148(8):2283–2291

    CAS  PubMed  Google Scholar 

  • D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  Google Scholar 

  • Detry J, Rosenbaum T, Lutz S, Hahn D, Jaeger KE, Muller M, Eggert T (2006) Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol using extracellular lipases from Bacillus subtilis. Appl Microbiol Biotechnol 72:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:10

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Johri S, Riyaz-ul-Hassan S, Maqbool QU, Verma V, Koul S, Taneja SC, Qazi GN (2005) Molecular cloning of enantioselective ester hydrolase from Bacillus pumilus DBRL-191. FEMS Microbiol Lett 249:113–120

    Article  CAS  PubMed  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37:26

    Article  Google Scholar 

  • Straathof AJJ (2001) Development of a computer program for analysis of enzyme kinetics by progress curve fitting. J Mol Catal B Enzy 11:991–998

    Article  CAS  Google Scholar 

  • van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J Mol Biol 309:215–226

    Article  PubMed  Google Scholar 

  • Willeman WF, Hanefeld U, Straathof AJ, Heijnen JJ (2000) Estimation of kinetic parameters by progress curve analysis for the synthesis of (R)-mandelonitrile by Prunus amygdalus hydroxynitrile lyase. Enzy Microb Technol 27:423–433

    Article  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

Download references

Acknowledgments

Experiment of Circular Dichroism spectroscopy was carried out by Mr. Hackwon Do. This research was supported by a Grant from the Ministry of Oceans and Fisheries (PM12030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wi, A.R., Jeon, SJ., Kim, S. et al. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus . Biotechnol Lett 36, 1295–1302 (2014). https://doi.org/10.1007/s10529-014-1475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1475-8

Keywords

Navigation