Skip to main content
Log in

Is mitochondrial DNA turnover slower than commonly assumed?

  • Opinion
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Mutations arise during DNA replication due to oxidative lesions and intrinsic polymerase errors. Mitochondrial DNA (mtDNA) mutation rate is therefore closely linked to the mitochondrial DNA turnover process, especially in post mitotic cells. This makes the mitochondrial DNA turnover rate critical for understanding the origin and dynamics of mtDNA mutagenesis in post mitotic cells. Experimental mitochondrial turnover quantification has been based on different mitochondrial macromolecules, such as mitochondrial proteins, lipids and DNA, and the experimental data suggested highly divergent turnover rates, ranging from over 2 days to about 1 year. In this article we argue that mtDNA turnover rate cannot be as fast as is often envisaged. Using a stochastic model based on the chemical master equation, we show that a turnover rate corresponding to mtDNA half-life in the order of months is the most consistent with published mtDNA mutation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ameur A, Stewart JB, Freyer C, Hagstrom E, Ingman M, Larsson NG, Gyllensten U (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7(3):e1002028

    Article  PubMed  CAS  Google Scholar 

  • Burgess RJ, Walker JH, Mayer RJ (1978) Choice of precursors for the measurement of protein turnover by the double-isotope method. Application to the study of mitochondrial proteins. Biochem J 176(3):919–926

    PubMed  CAS  Google Scholar 

  • Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14(2):R283–R289

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Samuels DC (1999) Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet 64:1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Collins ML, Eng S, Hoh R, Hellerstein MK (2003) Measurement of mitochondrial DNA synthesis in vivo using a stable isotope-mass spectrometric technique. J Appl Physiol 94(6):2203–2211

    PubMed  CAS  Google Scholar 

  • Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797

    Article  PubMed  CAS  Google Scholar 

  • de Rodrijguez Lores A, de Alberici Canal M, de Robertis E (1971) Turnover of proteins in subcellular fractions of rat cerebral cortex. Brain Res 31(1):179–184

    Article  Google Scholar 

  • Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806

    Article  PubMed  CAS  Google Scholar 

  • ESCODD (2002a) Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Free Radic Res 23:2129–2133

    Google Scholar 

  • ESCODD (2002b) Inter-laboratory validation of procedures for measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic Res 36(3):239–245

    Article  Google Scholar 

  • Fletcher MJ, Sanadi DR (1961) Turnover of rat-liver mitochondria. Biochim Biophys Acta 51:356–360

    Article  PubMed  CAS  Google Scholar 

  • Gandhi VV, Samuels DC (2011) Enzyme kinetics of the mitochondrial deoxyribonucleoside salvage pathway are not sufficient to support rapid mtDNA replication. PLoS Comput Biol 7(8):e1002078

    Article  PubMed  CAS  Google Scholar 

  • Gross NJ, Getz GS, Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244(6):1552–1562

    PubMed  CAS  Google Scholar 

  • Grozdova MD, Starostina IK (1973) Protein synthesis in the myocardium in experimental allergic lesion of the heart in rabbits. Vopr Med Khim 19(4):403–407

    Google Scholar 

  • Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing—where do we stand? Front Biosci 13:6554–6579

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford science publications, Clarendon Press, Oxford University Press, Oxford

    Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    PubMed  CAS  Google Scholar 

  • Huemer RP, Lee KD, Reeves AE, Bickert C (1971) Mitochondrial studies in senescent mice-II. Specific activity, buoyant density, and turnover of mitochondrial DNA. Exp Gerontol 6(5):327–334

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26(2):176–181

    Article  PubMed  CAS  Google Scholar 

  • Ip MM, Chee PY, Swick RW (1974) Turnover of hepatic mitochondrial ornithine aminotransferase and cytochrome oxidase using [14C]carbonate as tracer. Biochim Biophys Acta 354(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Jaleel A, Short KR, Asmann YW, Klaus KA, Morse DM, Ford GC, Nair KS (2008) In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrin ol Metab 295(5):E1255–E1268

    Article  CAS  Google Scholar 

  • Johnson AA, Johnson KA (2001) Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J Biol Chem 276(41):38090–38096

    PubMed  CAS  Google Scholar 

  • Kanki T, Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283(47):32386–32393

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253

    Article  PubMed  CAS  Google Scholar 

  • Korr H, Kurz C, Seidler TO, Sommer D, Schmitz C (1998) Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz J Med Biol Res 31(2):289–298

    Article  PubMed  CAS  Google Scholar 

  • Kowald A, Kirkwood TBL (2000) Accumulation of defective mitochondria through delayed degradation of damaged organelles and its possible role in the ageing of post-mitotic and dividing cells. J Theor Biol 202:145–160

    Article  PubMed  CAS  Google Scholar 

  • Kowald A, Jendrach M, Pohl S, Bereiter-Hahn J, Hammerstein P (2005) On the relevance of mitochondrial fusions for the accumulation of mitochondrial deletion mutants: a modelling study. Aging Cell 4(5):273–283

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3(2):e24

    Article  PubMed  Google Scholar 

  • Kunkel TA (1985) The mutational specificity of DNA polymerases-alpha and-gamma during in vitro DNA synthesis. J Biol Chem 260(23):12866–12874

    PubMed  CAS  Google Scholar 

  • Kunkel TA (1992) DNA replication fidelity. J Biol Chem 267(26):18251–18254

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Sabatino RD, Bambara RA (1987) Exonucleolytic proofreading by calf thymus DNA polymerase delta. Proc Natl Acad Sci U S A 84(14):4865–4869

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG (2011) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    Article  Google Scholar 

  • Lee HR, Johnson KA (2006) Fidelity of the human mitochondrial DNA polymerase. J Biol Chem 281(47):36236–36240

    Article  PubMed  CAS  Google Scholar 

  • Lipsky NG, Pedersen PL (1981) Mitochondrial turnover in animal cells. Half-lives of mitochondria and mitochondrial subfractions of rat liver based on [14C]bicarbonate incorporation. J Biol Chem 256(16):8652–8657

    PubMed  CAS  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    Article  PubMed  CAS  Google Scholar 

  • Marver HS, Collins A, Tschudy DP, Rechcigl M Jr (1966) Delta-aminolevulinic acid synthetase. II. Induction in rat liver. J Biol Chem 241(19):4323–4329

    PubMed  CAS  Google Scholar 

  • Menzies RA, Gold PH (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246(8):2425–2429

    PubMed  CAS  Google Scholar 

  • Mijaljica D, Prescott M, Devenish RJ (2007) Different fates of mitochondria: alternative ways for degradation? Autophagy 3(1):4–9

    PubMed  CAS  Google Scholar 

  • Miwa S, Lawless C, von Zglinicki T (2008) Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell 7(6):920–923

    Article  PubMed  CAS  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115(5):629–640

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  PubMed  CAS  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    Article  PubMed  CAS  Google Scholar 

  • Nicholas A, Kraytsberg Y, Guo X, Khrapko K (2009) On the timing and the extent of clonal expansion of mtDNA deletions: evidence from single-molecule PCR. Exp Neurol 218(2):316–319

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti M, Guerri C, Grisolia S (1977) Turnover of carbamyl phosphate synthase, of other mitochondrial enzymes and of rat tissues. Effect of diet and of thyroidectomy. Eur J Biochem 75(2):583–592

    Article  PubMed  CAS  Google Scholar 

  • Poovathingal SK, Gruber J, Halliwell B, Gunawan R (2009) Stochastic drift in mitochondrial DNA point mutations: a novel perspective ex silico. PLoS Comput Biol 5(11):e1000572

    Article  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    Article  PubMed  CAS  Google Scholar 

  • Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, Loeb LA (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39(4):540–543

    Article  PubMed  CAS  Google Scholar 

  • Wallace R, Knecht E, Grisolia S (1986) Turnover of rat liver ornithine transcarbamylase. FEBS Lett 208(2):427–430

    Article  PubMed  CAS  Google Scholar 

  • Wiesner RJ, Zsurka G, Kunz WS (2006) Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res 40(12):1284–1294

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, Zassenhaus HP (2000) Construction of transgenic mice with tissue-specific acceleration of Mitochondrial DNA mutagenesis. Genomics 69:151–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore Ministry of Education Grants [AcRF Tier 1, FRC Grant (R279000299112 to SKP and RG) and AcRF Tier 2 (MOE2010-T2-2-048 to SKP, JG, and BH)], Singapore and Biomedical Research Council of Singapore [Grant number: (BMRC 07/1/21/19/524 to SKP, JG and BH)], and ETH Zurich (to RG and LL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudiyanto Gunawan.

Additional information

Suresh Kumar Poovathingal and Jan Gruber have equally contributed to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poovathingal, S.K., Gruber, J., Lakshmanan, L. et al. Is mitochondrial DNA turnover slower than commonly assumed?. Biogerontology 13, 557–564 (2012). https://doi.org/10.1007/s10522-012-9390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9390-7

Keywords

Navigation