Skip to main content
Log in

Structure of an Absorbing Medium in the Nucleus of the Galaxy Mrk 417 Based on NuSTAR and Swift/Bat Data

  • Published:
Astrophysics Aims and scope

We present the results of X-ray spectral analysis of the Seyfert type 2 galaxy Mrk 417 ( ɀ ≈ 0.0327 ) based on data from the NuSTAR (3-60 keV) and Swift/BAT (14-150 keV) space observatories. The spectrum from the NuSTAR observatory is well described by a basic power-law model with neutral absorption and an additional reflection component from a cold neutral medium (power-law index \( \Gamma ={1.63}_{-0.11}^{+0.10} \), absorption \( {\mathrm{N}}_{\mathrm{H}}={3.22}_{-0.39}^{+0.41}\cdot {10}^{23}{cm}^{-2} \)). A narrow Fe Kα emission line with an equivalent width \( {\mathrm{EW}}_{{\mathrm{FeK}}_{\upalpha}}={115}_{-1}^{+2}e\mathrm{V} \) is present and indicates a moderate density of the medium in which this line is formed. The NuSTAR data together with the Swift/BAT data were analyzed using the more complicated physical models MYTorus and BNTorus. In the first case a power-law index \( {\Gamma}_{\mathrm{MYTorus}}={1.68}_{-0.09}^{+0.09} \) and an absorption along the line of sight of \( {\mathrm{N}}_{\mathrm{HI}.\mathrm{o}.\mathrm{s}}={3.36}_{-0.07}^{+0.04}\cdot {10}^{23}{cm}^{-2} \) were obtained. The BNTorus model yields a power-law index of \( {\Gamma}_{\mathrm{BNTorus}}={1.75}_{-0.09}^{+0.09} \) and an absorption along the line of sight of \( {\mathrm{N}}_{\mathrm{HI}.\mathrm{o}.\mathrm{s}}={3.72}_{-0.39}^{+0.49}\cdot {10}^{23}{cm}^{-2} \). These results provide an estimate of the covering factor for the gas-dust torus of fc ≈ 0.29 − 0.34 and derive absorption-corrected X-ray luminosity of Lintr2 ‐ 10keV ∼ 3.16 ⋅ 1043erg/s. Additional analysis of the observational data in the near IR indicates that the covering factor may even be smaller, at fc ∼ 0.12. These results indicate that the gas-dust torus is most likely compressed along the vertical and has preferably a ring-like geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).

    Article  ADS  Google Scholar 

  2. G. Matt, A. C. Fabian, R. R. Ross, Mon. Not. Roy. Astron. Soc. 264, 839 (1993).

    Article  ADS  Google Scholar 

  3. R. R. Ross, A. C. Fabian, Mon. Not. Roy. Astron. Soc. 261, 74 (1993).

    Article  ADS  Google Scholar 

  4. I. M. George, A. C. Fabian, Mon. Not. Roy. Astron. Soc. 249, 352 (1991).

    Article  ADS  Google Scholar 

  5. A. A. Vasylenko, Kinematics and Phys. Celest. Bodies, 34, 302 (2018).

    Article  ADS  Google Scholar 

  6. A. A. Vasylenko, Astrophys. Space Sci. 363, 228 (2018).

    Article  ADS  Google Scholar 

  7. A. A. Vasylenko, E. Fedorova, V. I. Zhdanov, Advances in Astron. Space Phys. 3, 120 (2013).

    ADS  Google Scholar 

  8. A. A. Vasylenko, V. I. Zhdanov, E. Fedorova, Astrophys. Space Sci. 360, 71 (2015).

    Article  ADS  Google Scholar 

  9. J. Wilms, A. Allen, R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  10. T. Yaqoob, Mon. Not. Roy. Astron. Soc. 423, 3360 (2012).

    Article  ADS  Google Scholar 

  11. N. G. Chesnok, S. G. Sergeev, I. B. Vavilova, Kinematics and Phys. Celest. Bodies 25, 107 (2009).

    Article  ADS  Google Scholar 

  12. F. A. Harrison, W. W. Craig, F. E. Christensen, et al., Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  13. W. H. Baumgartner, J. Tueller, C. B. Markwardt, et al., Astrophys. J. Suppl. 207, 19 (2013).

    Article  ADS  Google Scholar 

  14. H. G. Khim, J. Park, S. W. Seo, et al., Astrophys. J. Suppl. 220, 3 (2015).

    Article  ADS  Google Scholar 

  15. H. G. Jr Corwin, R. J. Buta, G. De Vaucouleurs, Astrophys. J. 108, 2128 (1994).

    Google Scholar 

  16. L. M. Winter, R. F. Mushotzky, J. Tueller, Astrophys. J. 674, 686 (2008).

    Article  ADS  Google Scholar 

  17. Y. Fukazawa, K. Hiragi, M. Mizuno, et al., Astrophys. J. 727, 19 (2011).

    Article  ADS  Google Scholar 

  18. T. Kawamuro, Y. Ueda, F. Tazaki, et al., Astrophys. J. Suppl. 225, 14 (2016).

    Article  ADS  Google Scholar 

  19. L. M. Winter, R. F. Mushotzky, Y. Terashima, et al., Astrophys. J. 701, 1664 (2009).

    Article  ADS  Google Scholar 

  20. K. Oh, M. Koss, C. B. Markwardt, Astrophys. J. Suppl. 235, 4 (2018).

    Article  ADS  Google Scholar 

  21. P. Kalberla, W. B. Burton, D. Hartmann, et al., Astron. Astrophys. 440, 775 (2005).

    Article  ADS  Google Scholar 

  22. C. L. Bennet, M. Halpern, G. Hinshaw, et al., Astrophys. J. Suppl. 148, 1 (2003).

    Article  ADS  Google Scholar 

  23. K. Nandra, P. O’Neill, I. M. George, et al., Mon. Not. Roy. Astron. Soc. 382, 194 (2007).

    Google Scholar 

  24. T. Yaqoob, Astrophys. J. 479, 184 (1997).

    Article  ADS  Google Scholar 

  25. K. D. Murphy, T. Yaqoob, Mon. Not. Roy. Astron. Soc. 397, 1549 (2009).

    Article  ADS  Google Scholar 

  26. M. Brightman, K. Nandra, Mon. Not. Roy. Astron. Soc. 413, 1206 (2011).

    Article  ADS  Google Scholar 

  27. C. Ramos Almedia, C. Ricci, Nature Astron. 1, 679 (2017).

    Article  ADS  Google Scholar 

  28. D. Asmus, P. Gandhi, S. F. Honig, et al., Mon. Not. Roy. Astron. Soc. 454, 766 (2015).

    Google Scholar 

  29. E. L. Wright, P. R. Eisenhardt, M. Eisenhardt, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  30. D. Stern, R. Assef, J. D. Benford, et al., Astrophys. J. 753, 30 (2012).

    Article  ADS  Google Scholar 

  31. M. Stalevsky, C. Ricci, Y. Ueda, et al., Mon. Not. Roy. Astron. Soc. 458, 2288 (2016).

    Google Scholar 

  32. X. Zhao, S. Marchesi, M. Ajello, et al., Astrophys. J. 870, 60 (2019).

    Article  ADS  Google Scholar 

  33. E. Lusso, A. Comastri, B. D. Simmons, et al., Mon. Not. Roy. Astron. Soc. 425, 623 (2012).

    Google Scholar 

  34. M. Moshir, G. Kopan, T. Conrow, et al., VizieR Online Data Catalog, 2275 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.V. Kompaniiets.

Additional information

Translated from Astrofizika, Vol. 63, No. 3, pp. 345-361 (August 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kompaniiets, O., Vasylenko, A.A. Structure of an Absorbing Medium in the Nucleus of the Galaxy Mrk 417 Based on NuSTAR and Swift/Bat Data. Astrophysics 63, 307–321 (2020). https://doi.org/10.1007/s10511-020-09636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09636-1

Keywords

Navigation