Skip to main content
Log in

No reason for keeping 0+ perch (Perca fluviatilis L.) with the prey fish

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Growth and survival of 0+ perch were studied in 4 ponds with the topmouth gudgeon (Pseudorasbora parva) and without it. In the end of April, all ponds were stocked by free-swimming perch larvae (120,000 ind ha−1). In June, topmouth gudgeon was introduced as forage fish (40 kg ha−1) into two of the experimental ponds. Topmouth gudgeon significantly influenced neither the total abundance of zooplankton nor the abundance of its groups (Rotifera, Cladocera, Copepoda). The most important food item for perch (TL > 29 mm) was macroinvertebrates (especially Chironomidae). In the ponds with topmouth gudgeon, copepods and cladocerans were more important than in ponds without it. Specific growth rate of perch was 0.01 mm day−1 in all ponds. Final mean total length (TL ± SD) of perch was 73 ± 13 and 70 ± 6 mm in the ponds with topmouth gudgeon and without it, respectively. Only 1 % of the perch reached higher TL than that recorded in the ponds without the topmouth gudgeon. Survival rate of perch varied from 12 to 36 % depending on ponds. Piscivory was recorded in all ponds from the age of 57 days (post-stocking); however, perch siblings were preferred to topmouth gudgeon. The highest asymptotic growth (L∞ = 88 mm) was calculated in the pond stocked with topmouth gudgeon. This corresponded with the highest cannibalism and lowest survival rate (12 %). Perch growth rate increased till 42–53 days of perch age and then started to decrease. There was no significant influence of potential prey fish (topmouth gudgeon) on the growth of 0+ perch; however, two size cohorts were found in the ponds with the topmouth gudgeon. Presence or absence of littoral macrophytes seems to be more substantial for rearing perch in ponds than stocking with the prey fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adámek Z, Opačak A (2005) Prey selectivity in pike (Esox lucius), zander (Sander lucioperca) and perch (Perca fluviatilis) under experimental conditions. Biologia 60:567–570

    Google Scholar 

  • Adámek Z, Musil J, Sukop I (2004) Diet composition and selectivity in 0+ perch (Perca fluviatilis L.) and its competition with adult fish and carp (Cyprinus carpio L.) stock in pond culture. Agric Conspec Sci 69:21–27

    Google Scholar 

  • Alavi SHM, Rodina M, Hatef A, Stejskal V, Policar T, Hamackova J, Linhart O (2010) Sperm motility and monthly variation of semen characteristic in Perca fluviatilis (Teleostei: Percidae). Czech J Anim Sci 55:174–182

    CAS  Google Scholar 

  • Baras E, Kestemont P, Mélard C (2003) Effect of stocking density on the dynamics of cannibalism in sibling larvae of Perca fluviatilis under controlled conditions. Aquaculture 219:241–255

    Article  Google Scholar 

  • Beeck P, Tauber S, Kiel S, Borcherding J (2002) 0+ perch predation on 0+ bream: a case study in a eutrophic gravel pit lake. Freshw Biol 47:2359–2369

    Article  Google Scholar 

  • Berezina NA, Strel’nikova AP (2001) Relationships between the food spectrum of perch fry (Perca fluviatilis L.) and the structure of zoobenthos in experimental mesocosms. Biol Bull 28:311–318

    Article  Google Scholar 

  • Brabrand Å (1995) Intra-cohort cannibalism among larval stages of perch Perca fluviatilis. Ecol Freshw Fish 4:70–76

    Article  Google Scholar 

  • Byström P, Persson L, Wahlström E (1998) Competing predators and prey: juvenile bottlenecks in whole-lake experiments. Ecology 79:2153–2167

    Google Scholar 

  • Byström P, Huss M, Persson L (2012) Ontogenetic constrains and diet shift in Perch (Perca fluviatilis): mechanisms and consequences for intra-cohort cannibalism. Freshw Biol 57:847–857

    Article  Google Scholar 

  • Chen Y, Jackson DA, Harvey HH (1992) A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can J Fish Aquat Sci 49:1228–1235

    Article  Google Scholar 

  • Fiogbé ED, Kestemont P (2003) Optimum daily ratio of Eurasian perch Perca fluviatilis L. reared at its optimum growing temperature. Aquaculture 144:239–249

    Article  Google Scholar 

  • Fontaine P, Tamazouzt L, Terver D, Georges A (1993) Actual state of production of perch: problems and prospects. Mass rearing potentialities of the common perch under controlled conditions. In: EAS (ed) Aquaculture of freshwater species. Workshop on aquaculture of freshwater species except Salmonids. EAS spec pub 20, pp 46–48

  • Hjelm J, Persson L, Christensen B (2000) Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122:190–199

    Article  Google Scholar 

  • Horáková M, Lischke P, Grünwald A (1989) Chemické a fyzikální metody analýzy vod. Státní nakladatelství technické literatury, Praha

    Google Scholar 

  • Horppila J, Ruuhijärvi J, Rask M, Karppinen C, Nyberg K, Olin M (2000) Seasonal changes in the diets and relative abundance of perch and roach in the littoral and pelagic zones of a large lake. J Fish Biol 56:51–72

    Article  Google Scholar 

  • Huss M, van Kooten T, Persson L (2010a) Intra-cohort cannibalism and size bimodality: a balance between hatching synchrony and resource feedbacks. Oikos 119:2000–2011

    Article  Google Scholar 

  • Huss M, Bystrom P, Persson L (2010b) Growing through predation windows: effects on body size development in young fish. Oikos 119:1796–1804

    Article  Google Scholar 

  • Jacquemond F (2004) Sorting Eurasian perch fingerlings (Perca fluviatilis L.) with and without initial inflated swim bladder using tricainemethane sulfonate. Aquaculture 231:249–262

    Article  Google Scholar 

  • Kestemont P, Dabrowski K (1996) Recent advances in aquaculture of Percid fish. J Appl Ichthyol 12:137–200

    Article  Google Scholar 

  • Kestemont P, Mélard C (2000) Chapter 11—aquaculture. In: Craig JF (ed) Percids fishes—systematic, ecology and exploitation fish and aquatic resources series 3. Blackwell Sciences, pp 191–224

  • Kestemont P, Rougeot C, Musil J, Toner D (2008) Larval and juvenile production. In: Rougeot C, Toner D (eds) Farming of Eurasian Perch. Special publication BIM no. 24, Dublin, Ireland, pp 30–41

  • Mehner T, Schultz H, Herbst R (1995) Interaction of zooplankton dynamics and diet of 0+ perch (Perca fluviatilis L.) in the top–down manipulated Bautzen reservoir (Saxony, Germany) during summer. Limnologica 25:1–9

    Google Scholar 

  • Mehner T, Schultz H, Bauer D, Herbst R, Voigt H, Benndorf J (1996) Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann Zool Fenn 33:353–361

    Google Scholar 

  • Okun N, Mehner T (2005) Distribution and feeding of juvenile fish on invertebrates in littoral reed (Phragmites) stands. Ecol Freshw Fish 14:139–149

    Article  Google Scholar 

  • Otterlei E, Nyhammer G, Folkvord A, Stefansson SO (1999) Temperature- and size-dependent growth of larval and early juvenile Atlantic cod (Gadus morhua): a comparative study of Norwegian coastal cod and northeast Arctic cod. Can J Fish Aquat Sci 56:2099–2111

    Article  Google Scholar 

  • Persson L, Greenberg LA (1990) Juvenile competitive bottleneck—the perch (Perca fluviatilis)—roach (Rutilus rutilus) interaction. Ecology 71:44–56

    Article  Google Scholar 

  • Policar T, Stejskal V, Bláha M, Alavi SHM, Kouřil J (2009) Technologie intenzivniho chovu okouna říčního (Perca fluviatilis). Edice metodik Fakulty rybářství a ochrany vod, Jihočeská univerzita Českých Budějovicích 89:52

    Google Scholar 

  • Ricciardi A, Rasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Can J Fish Aquat Sci 55:1759–1765

    Article  Google Scholar 

  • Rosecchi E, Thomas F, Crivelli AJ (2001) Can life-history traits predict the fate of introduced species? A case study on two cyprinid fish in southern France. Freshw Biol 46:845–853

    Article  Google Scholar 

  • Scheiner SM (1993) Introduction: theories, hypotheses and statistics. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, London

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Stejskal V, Kouřil J (2006) Potravní adaptace plůdku okouna na podmínky intenzivního chovu, vol 42. Bulletin VURH, Vodňany, pp 18–24

    Google Scholar 

  • Stejskal V, Kouřil J, Policar T, Hamáčková J, Musil J (2009) Growth patterns of all females perch (Perca fluviatilis L.) juveniles—is monosex perch culture beneficial? J Appl Ichthyol 25:432–437

    Article  Google Scholar 

  • Stejskal V, Policar T, Bláha M, Křišťan J (2010) Produkce tržního okouna říčního (Perca fluviatilis) kombinací rybničního a intenzivního chovu. Edice metodik FROV JU 105:34

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (1998) Canoco reference manual and user’s guide to Canoco for windows. Centre of Biometry, Wageningen

    Google Scholar 

  • Thiel R (1989) Food resource utilization and dietary relationships of juvenile perch (Perca fluviatilis L.) and pike-perch (Stizostedion lucioperca (L.)) in a shallow Baltic inlet. Rapport et proces-verbaux des réunions. Conseil Permanent International pour l’Exploration de la Merra 190:133–138

    Google Scholar 

  • Tresauer JW (1990) The food and daily food consumption of lacustrine 0+ perch, Perca fluviatilis L. Freshw Biol 24:361–374

    Article  Google Scholar 

  • Urbatzka R, Beeck P, van der Velde G, Borcherding J (2008) Alternative use of food resources causes intra-cohort variation in the size distribution of young-of-the-year perch (Perca fluviatilis). Ecol Freshw Fish 17:475–480

    Article  Google Scholar 

  • Van Densen WLT, Ligvoet W, Roozen RWM (1996) Intra-cohort variation in the individual size of juvenile pikeperch, Stizostedion lucioperca, and perch, Perca fluviatilis, in relation to the size spectrum of their food items. Ann Zool Fenn 33:495–506

    Google Scholar 

  • Watson L (2008) The European market of perch (Pecra fluviatilis). In: Fontaine P, Kestemont P, Teletchea F, Wang N (eds) Percid fish culture—from research to production. Proceedings of abstracts and short communications of the workshop, Namur, Belgium, pp 10–14

  • Yin X, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ (2003) A flexible sigmoid function of determinate growth. Ann Bot Lond 91:361–371

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This study was supported by OPVK CZ.1.07/2.3.00/09.0076, Grant agency of USB 047/2010/Z and CENAKVA CZ.1.05/2.1.00/01.0024. We thank two anonymous reviewers for valuable comments on the first version of manuscript and also to Vlasta Stejskal for help with dissecting YOY perch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bláha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bláha, M., Šetlíkova, I., Musil, J. et al. No reason for keeping 0+ perch (Perca fluviatilis L.) with the prey fish. Aquacult Int 21, 883–896 (2013). https://doi.org/10.1007/s10499-012-9576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-012-9576-7

Keywords

Navigation