Skip to main content
Log in

Down-regulation of p21 contributes to apoptosis induced by HPV E6 in human mammary epithelial cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Infection with human papillomaviruses (HPV) is strongly associated with the development of cervical cancer. The HPV E6 gene is essential for the oncogenic potential of HPV. E6 induces cell proliferation and apoptosis in cervical cancer precursor lesions and in cultured cells. Although induction of telomerase and inactivation of the tumor suppressor p53 play important roles for E6 to promote cell growth, the molecular basis of E6-induced apoptosis is poorly understood. While it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies demonstrated that E6 could in fact sensitize cells to apoptosis. Understanding the mechanism of p53-independent apoptosis is of clinical significance. In the present study, we investigated the mechanism of apoptosis during E6-mediated immortalization of primary human mammary epithelial cell (HMEC). E6 by itself is sufficient to immortalize HMECs and is believed to do so at least in part by activation of telomerase. During the process of E6-mediated HMEC immortalization, an increased apoptosis was observed. Mutational analysis demonstrated that E6-induced apoptosis was distinct from its ability to promote cell proliferation, activate telomerase, or degrade p53. While the known pro-apoptotic E6 target proteins such as Bak or c-Myc did not appear to play an important role, down-regulation of the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) by E6 correlated with its ability to induce apoptosis. Ectopic expression of p21 inhibited E6-induced apoptosis. Moreover, a p53 degradation defective E6 mutant was competent for p21 down-regulation and apoptosis induction. The anti-apoptotic function of p21 may not simply be the result of p21-induced growth arrest. These studies demonstrate an E6 activity to down-regulate p21 that is important for induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zur Hausen H. Papillomavirus infections-a major cause of human cancers. Biochimica et Biophysica Acta 1996; 1288: F55–F78.

    PubMed  Google Scholar 

  2. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248: 76–79.

    Article  PubMed  CAS  Google Scholar 

  3. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  PubMed  CAS  Google Scholar 

  4. Munger K, Werness BA, Dyson N, et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8: 4099–4105.

    PubMed  CAS  Google Scholar 

  5. Gage JR, Meyers C, Wettstein FO. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 1990; 64: 723–730.

    PubMed  CAS  Google Scholar 

  6. Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991; 10: 4129–4135.

    PubMed  CAS  Google Scholar 

  7. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  8. Rapp L, Chen JJ. The papillomavirus E6 proteins. Biochim Biophys Acta 1998; 1378: F1–F19.

    PubMed  CAS  Google Scholar 

  9. Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001; 20: 7874–7887.

    Article  PubMed  CAS  Google Scholar 

  10. Hudson JB, Bedell MA, McCance DJ, Laiminis LA. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol 1990; 64: 519–526.

    PubMed  CAS  Google Scholar 

  11. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  12. Band V, DeCaprio J, Delmolino L, et al. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991; 65: 6671–6676.

    PubMed  CAS  Google Scholar 

  13. Band V, Dalal S, Delmolino L, Androphy EJ. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells. EMBO J 1993; 12: 1847–1852.

    PubMed  CAS  Google Scholar 

  14. Shay JW, Wright WE, Brasiskyte D, Van Der Haegen BA. E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 1993; 8: 1407–1413.

    PubMed  CAS  Google Scholar 

  15. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 1996; 380: 79–82.

    Article  PubMed  CAS  Google Scholar 

  16. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Chen JJ, Gao Q, et al. Multiple functions of human papillomavirus type16 E6 contribute to the immortalization of mammary epithelial cells. J Virol 1999; 73: 7297–7307.

    PubMed  CAS  Google Scholar 

  18. Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA 2003; 100: 8211–8216.

    Article  PubMed  CAS  Google Scholar 

  19. McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol 2003; 77: 9852–9861.

    Article  PubMed  CAS  Google Scholar 

  20. Gao Q, Srinivasan S, Boyer SN, et al. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol 1999; 19: 733–744.

    PubMed  CAS  Google Scholar 

  21. Gao Q, Singh L, Kumar A, et al. Human papillomavirus type 16 E6-induced degradation of e6tp1 correlates with its ability to immortalize human mammary epithelial cells. J Virol 2001; 75: 4459–4466.

    Article  PubMed  CAS  Google Scholar 

  22. Shamanin VA, Androphy EJ. Immortalization of human mammary epithelial cells is associated with inactivation of the p14ARF-p53 pathway. Mol Cell Biol 2004; 24: 2144–2152.

    Article  PubMed  CAS  Google Scholar 

  23. Rich T, Watson CJ, Wyllie A. Apoptosis: The germs of death. Nat Cell Biol 1999; 1: E69–71.

    Article  PubMed  CAS  Google Scholar 

  24. Teodoro JG, Branton PE. Regulation of apoptosis by viral gene products. J Virol 1997; 71: 1739–1746.

    PubMed  CAS  Google Scholar 

  25. Duttagupta C, Basu J, Ray M, Romney SL. Apoptotic changes in cervical intraepithelial neoplasia. Gynecol Obstet Invest 2001; 52: 38–42.

    Article  PubMed  CAS  Google Scholar 

  26. Chung TK, Cheung TH, Lo WK, et al. Expression of apoptotic regulators and their significance in cervical cancer. Cancer Lett 2002; 180: 63–68.

    Article  PubMed  CAS  Google Scholar 

  27. Finzer P, Aguilar-Lemarroy A, Rosl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett 2002; 188: 15–24.

    Article  PubMed  CAS  Google Scholar 

  28. Iglesias M, Yen K, Gaiotti D, et al. Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin-1alpha. Oncogene 1998; 17: 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  29. Stoppler H, Stoppler MC, Johnson E, et al. The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 1998; 17: 1207–1214.

    Article  PubMed  CAS  Google Scholar 

  30. DeFilippis RA, Goodwin EC, Wu L, DiMaio D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 2003; 77: 1551–1563.

    Article  CAS  Google Scholar 

  31. Xu C, Meikrantz W, Schlegel R, Sager R. The human papilloma virus 16E6 sensitizes human mammary epithelial cells to apoptosis induced by DNA damage. Proc Natl Acad Sci USA 1995; 92: 7829–7833.

    Article  PubMed  CAS  Google Scholar 

  32. Seewaldt VL, Mrozek K, Dietze EC, et al. Human papillomavirus type 16 E6 inactivation of p53 in normal human mammary epithelial cells promotes tamoxifen-mediated apoptosis. Cancer Res 2001; 61: 616–624.

    PubMed  CAS  Google Scholar 

  33. Seewaldt VL, Mrozek K, Sigle R, et al. Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix-induced apoptosis. J Cell Biol 2001; 155: 471–486.

    Article  PubMed  CAS  Google Scholar 

  34. Wahl AF, Donaldson KL, Fairchild C, et al. Loss of normal p53 function confers sensitization to taxol by increased G2/M arrest and apoptosis. Nat Med 1996; 2: 72–79.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Fan S, Eastman A, et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 1996; 88: 956–965.

    Article  PubMed  CAS  Google Scholar 

  36. Bunz F, Hwang PM, Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104: 263–269.

    Article  CAS  PubMed  Google Scholar 

  37. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6: 2895–2902.

    PubMed  CAS  Google Scholar 

  38. Jiang W, Hunter T. Analysis of cell-cycle profiles in transfected cells using a membrane-targeted GFP. Biotechniques 1998; 24: 349–350, 352, 354

    Google Scholar 

  39. Band V, Sager R. Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc Natl Acad Sci USA 1989; 86: 1249–1253.

    Article  PubMed  CAS  Google Scholar 

  40. Kim NW, Piatyszed MA, Prowse KR, et al. Specific association of human telomerase with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  41. Jackson S, Harwood C, Thomas M, et al. Role of bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 2000; 14: 3065–3073.

    Article  PubMed  CAS  Google Scholar 

  42. Aguilar-Lemarroy A, Gariglio P, Whitaker NJ, et al. Restoration of p53 expression sensitizes human papillomavirus type 16 immortalized human keratinocytes to CD95-mediated apoptosis. Oncogene 2002; 21: 165–175.

    Article  PubMed  CAS  Google Scholar 

  43. Kinoshita T, Shirasawa H, Shino Y, et al. Transactivation of prothymosin α and c-myc promoters by human papillomavirus type 16 E6 protein. Virology 1997; 232: 53–61.

    Article  PubMed  CAS  Google Scholar 

  44. Wang J, Xie LY, Allan S, et al. Myc activates telomerase. Genes Dev 1998; 12: 1769–1774.

    Article  PubMed  CAS  Google Scholar 

  45. Gross-Mesilaty S, Reinstein E, Bercovich B, et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA 1998; 95: 8058–8063.

    Article  PubMed  CAS  Google Scholar 

  46. Chan SW, Blackburn EH. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21: 553–563.

    Article  PubMed  CAS  Google Scholar 

  47. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91: 25–34.

    Article  CAS  PubMed  Google Scholar 

  48. Chin Lea. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97: 527–538.

    Article  CAS  PubMed  Google Scholar 

  49. Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392: 569–574.

    Article  CAS  PubMed  Google Scholar 

  50. Kondo Y, Kondo S, Tanaka Y, et al. Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 1998; 16: 2243–2248.

    Article  PubMed  CAS  Google Scholar 

  51. Hahn WC, Stewart SA, Brooks MW, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  PubMed  CAS  Google Scholar 

  52. Herbert B, Pitts AE, Baker SI, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 1999; 96: 14276–14281.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Mar V, Zhou W, et al. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13: 2388–2399.

    Article  PubMed  CAS  Google Scholar 

  54. Sak A, et al. Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21. Cancner Gene Therapy 2003; 10: 926–934.

    Article  CAS  Google Scholar 

  55. Gorospe M, Wang X, Guyton KZ, Holbrook NJ. Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 1996; 16: 6654–6660.

    PubMed  CAS  Google Scholar 

  56. Gorospe M, Cirielli C, Wang X, et al. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 1997; 14: 929–935.

    Article  PubMed  CAS  Google Scholar 

  57. Murray SA, Zheng H, Gu L, Jim Xiao ZX. IGF-1 activates p21 to inhibit uv-induced cell death. Oncogene 2003; 22: 1703–1711.

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki A, Tsutomi Y, Akahane K, et al. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998; 17: 931–939.

    Article  PubMed  CAS  Google Scholar 

  59. Roninson IB. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): Association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002; 179: 1–14.

    Article  PubMed  CAS  Google Scholar 

  60. Shi L, Nishioka WK, Th’ng J, et al. Premature p34cdc2 activation required for apoptosis. Science 1994; 263: 1143–1145.

    Article  PubMed  CAS  Google Scholar 

  61. Shimizu T, O’Connor PM, Kohn KW, Pommier Y. Unscheduled activation of cyclin B1/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res 1995; 55: 228–231.

    PubMed  CAS  Google Scholar 

  62. Yu D, Jing T, Liu B, et al. Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell 1998; 2: 581–591.

    Article  PubMed  CAS  Google Scholar 

  63. Tan M, Jing T, Lan KH, et al. Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell 2002; 9: 993–1004.

    Article  PubMed  CAS  Google Scholar 

  64. Dotto GP. p21(WAF1/Cip1): More than a break to the cell cycle? Biochim Biophys Acta 2000; 1471: M43–56.

    PubMed  CAS  Google Scholar 

  65. Giannoudis A, Herrington CS. Differential expression of p53 and p21 in low grade cervical squamous intraepithelial lesions infected with low, intermediate, and high risk human papillomaviruses. Cancer 2000; 89: 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  66. Burkhart BA, Alcorta DA, Chiao C, et al. Two posttranscriptional pathways that regulate p21(Cip1/Waf1/Sdi1) are identified by HPV16-E6 interaction and correlate with life span and cellular senescence. Exp Cell Res 1999; 247: 168–175.

    Article  PubMed  CAS  Google Scholar 

  67. Gudas J, Nguyen H, Li T, et al. Effects of cell cycle, wild-type p53 and DNA damage on p21CIP1/Waf1 expression in human breast epithelial cells. Oncogene 1995; 11: 253–261.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Liu, Y. & Chen, J.J. Down-regulation of p21 contributes to apoptosis induced by HPV E6 in human mammary epithelial cells. Apoptosis 10, 63–73 (2005). https://doi.org/10.1007/s10495-005-6062-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-6062-y

Keywords:

Navigation