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Abstract
This paper investigates the issue of rating prediction for neighborhood-based collaborative filtering in recommendation
systems. A novel rating prediction algorithm, called iterative rating prediction (IRP), is proposed for neighborhood-based
collaborative filtering. The main idea behind IRP is neighborhood propagation. To predict ratings of items for target users,
IRP relies on not only the rating information of direct neighbors but also that of indirect neighbors with different propagation
depth. To implement the idea, IRP iteratively updates the ratings of items for users. The efficiency of the proposed method
is examined through extensive experiments. Experimental results demonstrate the superior performance of our method,
especially on small-scaled and sparse datasets.
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1 Introduction

Nowadays, the E-commerce and social networking websites
are very active in our daily life [1–3]. For the fast growth
in the World Wide Web (WWW), it is not easy for users
to find appropriate items from WWW quickly. Fortunately,
recommender systems (RSs) can assist users in handling
the vast quality of information, which can provide an
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accurate recommendation of products [4–7]. E-commerce
websites, like Netfix.com and Amazon.com, personalize
recommendations for users and show them products related
to their interests and preferences. In such a situation, RS can
not only save the valuable time for users but also increase
profitability of the business by increasing sales at online
stores. The websites related to tourism [8], movies [9],
music [10], and news [11], and restaurants can recommend
items to users based on their past history [12].

The family tree of RSs is shown in Fig. 1 [13]. There
are three main categories of RSs’ techniques, including
collaborative filtering (CF), content-based filtering, and
hybrid filtering [12]. Content-based filtering algorithms try
to analyze the profile of a target user and the profile of a
target item based on the user’s historical behavior, and then
determine whether or not to recommend the target item to
the target user. However, it is hard to analyze profiles in
many applications such as multimedia data. CF algorithms
are the most successful and widely used in RSs [14–16].
The assumption in CF is that if some users have similar
interesting items up to now, these users would have similar
interests in future. Generally, CF is domain independent and
more accurate than content-based filtering. There are two
main branches for recommending items in CF: memory-
based and model-based algorithms. The hybrid filtering
methods combine the approaches of collaborative filtering
and content-based filtering in different ways. This paper
focuses on memory-based algorithms of CF.
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Fig. 1 Family tree of RSs

Memory-based collaborative filtering algorithms, also
referred to as neighborhood-based collaborative filtering
(NCF) ones, are simple and intuitive and can provide an
immediate response to a new user after receiving upon
his/her feedback. NCF depends on a simple intuition that an
active user may have preference behaviors on some items
if these items are appreciated by a set of similar users
(neighbors). NCF involves three main steps: (1) Calculating
a similarity value between two users or items by using a
similarity measurement; (2) Finding the nearest neighbors
of an active user or item according to the similarity
value; (3) Generating a predicted rating value for an
item according to the rating prediction algorithm. Because
previous researches have indicated that the similarity
measurement plays an important role in recommendation
performance of NCF, a lot of work about NCF have been
done on similarity measurements [15, 17–22]. The first two
steps of NCF are out of the scope of this paper, so we do not
discuss them further.

The rating prediction algorithm in the last step of
NCF is another factor considered by researchers. The
average prediction (Ave-pred) method [23] is the first
method for rating prediction. Ave-pred is simple and takes
only the average scores of neighbor users as ratings.
Thus, the recommendation performance of Ave-pred is
not satisfactory owing to ignoring the similarity between
different neighbors and the target user in the prediction
stage. Similarity-based prediction (Sim-pred) method [24]
predicts the rating of a target item based on the similarity
between the target user and its neighbors, which is
a commonly used method in NCF. However, Sim-pred
simply uses the rating information of neighbors such that
the prediction performance is related to the number of
neighbors. Moreover, Sim-pred cannot screen out high-
quality neighbors, its computational cost is relatively
high. Besides, in the domains of E-commerce and social
networks, the rating matrix is very sparse, which makes the
co-rated items of neighbor users extremely rare and would
lower the prediction accuracy. To remedy it, Zhang and

Pu [25] proposed a recursive prediction algorithm (RPA)
that relaxes the issue of the data sparseness. However,
RPA assigns ratings to items, but never backtracks and
modifies them again. As a result, the ratings predicted
by RPA may be partly incomplete. Kumar et al. [26]
proposed a new user rating prediction (URP) algorithm that
uses a fixed similarity algorithm. URP cannot transplant
other commonly used similarity measurements, otherwise
the recommendation performance of URP cannot be
guaranteed.

To overcome the data sparseness problem and provide
more accurate ratings, a novel iterative rating prediction
(IRP) method is presented to predict the ratings of items for
target users. Similar to RPA, IRP breaks the constraint of
relying on only direct neighbors and tries to utilize more
rating information. Our contributions are as follows:

– A general prediction method (IRP) is proposed for esti-
mate the ratings of users on items in RS. IRP is designed
independently of similarity measurement, so it can be
combined with existing similarity measurements, such
as Pearson correlation coefficient (PCC).

– By using the propagation of nearest neighbors, IRP
utilizes more rating information from indirect neighbors
with different propagation depth. In this way, IRP
efficiently extends the set of nearest neighbors.

– IRP iteratively backtracks and modifies the predicted
ratings. In the iterative process, we define the propa-
gation reliability for each entry in the user-item rating
matrix, which can show the reliability of each rating in
matrix and the propagation depth. In our method, the
greater the propagation depth or iteration, the smaller
the propagation reliability is.

The rest of the paper is organized as follows. In Section 2,
PCC and the related work on rating prediction algorithms
is reviewed. Section 3 proposes the new rating prediction
method. In Section 4, experimental results on real datasets
are reported and analyzed. Finally, Section 5 concludes this
paper.

2 Related work

In this section, we describe the similarity measurement
(PCC) and the rating prediction algorithms used in NCF.
In fact, our method mainly deals with the prediction stage;
thus, our method can be combined with arbitrary similarity
measurements, including traditional and new hybrid ones.
In addition, our method is a rating prediction method. For
comparison, we also introduce commonly used prediction
algorithms in NCF.

First, we provide some notations that are used in this
paper. Let U = {u1, u2, · · · , um} and T = {t1, t2, · · · , tn}
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be the sets of users and items, respectively, where m is the
number of users and n is the number of items. The user-item
rating matrix can be expressed as R ∈ R

m×n, where the ith
row and j th column element rij is the rating score made by
the ith user on the j th item. Table 1 lists related notations.

Assume that uv ∈ U is the target user and tj is the
target item. In the following, we discuss four methods for
calculating the prediction value of the user uv on the item tj .

2.1 Similarity measurement

Many similarity measurements have been proposed and
used in NCF for RSs, including traditional similarity mea-
surements (cosine similarity, Pearson correlation coefficient
[17]) and new hybrid ones [18–22]. Although new hybrid
similarity measurements can indeed improve the prediction
accuracy of RSs, these methods suffer from the issue of
high computational complexity. For simplicity, we use one
of simple traditional measurements: PCC.

PCC is often used to compute linear correlation between
a pair of objects. The similarity between users uv and ui can
be defined as follows:

sim(uv, ui) =
∑

tj ∈Tvi
(rvj − rv)(rij − ri)

√∑
tj ∈Tvi

(rvj − rv)2
√∑

tj ∈Tvi
(rij − ri)2

(1)

where Tvi represents the set of items rated by users uv and
ui together, rvj indicates the rating value of user uv on item
tj , and rv is the average rate of user uv .

2.2 Prediction algorithms

2.2.1 Ave-pred

The most simple method for rating prediction is the max-
imizing average satisfaction method, or Ave-pred, which
was proposed in [23]. Ave-pred can use arbitrary similar-
ity measurements to calculate the correlation between users.
However, when predicting the rating of the user uv on the
item tj , Ave-pred does not consider the distance relationship
between the target user uv and its neighbors but assigns the
same weight to all neighbors.

In Ave-pred, the calculation formula for prediction rating
is as follows:

r̂vj = 1

|NUv|
∑

ui∈NUv

rij (2)

where NUv represents the set of K nearest neighbors of the
target user uv , rij means the rating of user ui on item tj and
| · | denotes the cardinality of a set ·.

2.2.2 Sim-pred

On the basis of Ave-pred, Jannach proposed Sim-pred [24].
Similar to Ave-pred, Sim-pred needs to find the set NUv

of similar users for uv . Unlike to Ave-pred, Sim-pred takes
into account similarity between users besides the average
ratings of users. The average score of users can represent
their rating preference. As a result, the prediction is made
as a weighted average of neighbors. Although Sim-pred has
been widely applied to NCF methods, its recommendation
performance is related to the number of neighbors, and the
computational complexity is relatively high.

In Sim-pred, the prediction formula can be expressed as

r̂vj = rv +
∑

ui∈NUv
sim(uv, ui)(rij − ri)

∑
ui∈NUv

|sim(uv, ui)| (3)

where sim(uv, ui) is a function of computing the similarity
between uv and ui , rij represents the rating value of item tj
given by user ui , rv is the average rating score of user uv ,
and | · | is the absolute value of a scalar ·.

2.2.3 URP

Kumar et al. [26] designed a new user rating prediction
(URP) algorithm for predicting ratings of items.

In URP, there is an assumption that if two users rate
similar types of items and give similar ratings to these items,
then these users are similar to each other.

The similarity between the target user uv and user ui can
be calculated by

sim(uv, ui) =
∑

tp∈Tvi

rh − ∣
∣rvp − rip

∣
∣ (4)

Table 1 Description of
notations Notation Description

rh The highest rating value

n The maximum of items

ri The average rating score of user ui

rij The rating of user ui on item tj

Tvi The collection of items co-rated by user uv and user ui

NUv The set of K nearest neighbors for the user uv
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where rh is the highest rating among all ratings, rvp is the
rating of user uv on item tp, and Tvi is the set of items rated
by both users uv and ui . If sim(uv, ui) is greater than a
given threshold, then user ui is included in the list NUv . The
prediction formula of URP is as follows

r̂vj =
∑

ui∈NUv
rij

|NUv| +
∑

ui∈NUv
sim(uv, ui)

n |NUv| rh (5)

where n is the number of total items.
Although URP is very well implemented, the prediction

process is not suitable for other similarity calculation
methods except for (4). Even so, the similarity measurement
(4) is relatively simple and does not consider the user’s
rating preference. Besides, the similarity measurement
greatly depends on the co-rated items, the calculated
similarity would be biased if there are very few common
rated items owing to data sparseness.

2.2.4 RPA

Zhang and Pu [25] proposed a recursive prediction
algorithm that relaxes the constraint that nearest neighbors
must have rated the target item. If one nearest neighbor of
the target user has not rated the given item yet, then RPA
recursively estimates the rating value of this neighbor based
on the neighbor’s nearest neighbors and joins the estimated
rating value in the prediction of the target user on the given
item. In this way, RPA makes more information contribute
to the prediction process.

The predicted rating of RPA can be represented as the
following:

r̂vj = rv +
∑

ui∈NUv
w(ui, tj )sim(uv, ui)(rij − ri)

∑
ui∈NUv

∣
∣w(ui, tj )sim(uv, ui)

∣
∣

(6)

where rv represents the average rating of uv , NUv is the set
of nearest neighbors of user uv , rij means the score of item
tj given by user ui , and w(ui, tj ) is the weight value of user
uv on item tj and defined by

w(ui, tj ) =
{

1, if rij is given
λ, otherwise

with the weight threshold λ ∈ [0, 1].

3 Iterative rating prediction algorithm

In Section 2, we discuss four prediction methods for NCF,
all of which are direct and intuitive. Because Ave-pred,
Sim-pred and URP adopt only the rating information of
neighbor users who have rated the given item, these methods
would have bad prediction performance in the case of data
sparsity. Although RPA could avoid the issue of sparse data,
RPA has its own limitations: (1) RPA never backtracks and

modifies the predicted ratings; (2) It is hard to determine the
weight value w(ui, tj ) if rij is not given. On the basis of
neighborhood propagation and the iteration idea from RPA,
this section presents an iterative rating prediction algorithm.

It is well known that users may rate only on a small
amount of items owing to a huge number of items.
Therefore, there are many entries missed in the user-item
rating matrix R. Without loss of generality, let rij > 0 for
all rated items and rij = 0 for unrated ones. In other words,
if rij = 0, we thought that rij is not given by user ui . The
goal of IRP is to iteratively update the predicted rating r̂ij if
rij is not given in the original rating matrix.

3.1 Neighbor propagation

Before we discuss IRP, we first describe some related
concepts. Given the user set U and the item set T , the
neighborhood relation R on U and T can be described as:

R = {(uv, ui)|ui ∈ NUv ⊂ U, uv, ui ∈ U} (7)

where NUv is the set of K nearest neighbors of uv; that is,
|NUv| = K . The properties of neighborhood relation can
be found in Theorem 1.

Theorem 1 Let U be a user set and T be an item set. If R

is a neighborhood relation on U and T , then

1. R is reflexive;
2. R is not symmetric;
3. R is not transitive.

The proof of Theorem 1 is shown in Appendix A. The
system (U, R) can provide a directed graph G, where users
are taken as vertexes, and neighborhood relations are edges.
Usually, G can be represented by an adjacent matrix. Let
G be a directed graph induced by a user set U and its
neighborhood relation R. The adjacent matrix A of G can
be defined as

avi =
{

1, if (uv, ui) ∈ R

0, otherwise
(8)

where avi is the v-th row and i-th column entry of A.
The adjacent matrix A can describe the direct neighbor

relationship. For user uv , its direct neighbor is ui if and only
if avi = 1. In the directed graph G, uv is directly connected
and pointed to ui . It is possible that uv is indirectly
connected and pointed to ui in G. In this case, uv is said to
be propagated to ui and ui is called an indirected neighbor
of uv . To describe the indirect neighbor relationship, we
first define the concept of propagation formally.

Definition 1 Let G be a directed graph induced by the user
set U and its neighborhood relation R, and A be the adjacent
matrix of G.
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1. Let A1 = A. If a
(1)
vi = 1 in A1, then uv can be

propagated to ui .
2. Let A2 = A ⊗ A, where ⊗ denotes the logical

multiplication of matrices. If a
(2)
vi = 1 in A2, then uv

can be propagated to ui .
3. Let Aq = Aq−1 ⊗ A with q ∈ N

+. If a
(q)
vi = 1 in Aq ,

then uv can be propagated to ui .

From Definition 1, we can see that the neighborhood
propagation can be reflected by the relation composition of
A itself. In graph theory, a

(q)
vi = 1 in Aq also denotes that

there exists at least one path with length q from uv to ui . In
this way, we define the concept of indirect neighbors.

Definition 2 Let U be the user set, and A be the adjacent
matrix of G constructed on U . For uv ∈ U , ui is its indirect
neighbor if and only if avi = 0 and uv can be propagated to
ui .

In the following, we illustrate direct neighbors, indirect
ones and neighborhood propagation.

Example 1 Assume that there are five users and eight
items. Let U = {u1, u2, u3, u4, u5} and T =
{t1, t2, t3, t4, t5, t6, t7, t8}. The original rating information is
given in Table 2, where rating scores are between 1 to 5
and “-” means that users do not rate items. Let K = 2. We
analyze direct neighbors, indirect ones and neighborhood
propagation based on sets U and T .

First, we represent the user-item rating matrix as follows:

R =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 5 0 4 3 0
0 3 2 3 0 0 0 2
4 0 4 0 1 0 2 0
0 2 4 2 0 4 0 0
2 0 0 0 2 5 0 3

⎤

⎥
⎥
⎥
⎥
⎦

(9)

Second, we use PCC to measure the similarity between
five users. The similarity matrix S has the form:

S =

⎡

⎢
⎢
⎢
⎢
⎣

∞ 1 1 −0.707 0
1 ∞ −1 −1 0
1 −1 ∞ 1 0.164

−0.707 −1 1 ∞ 1
0 0 0.164 1.0 ∞

⎤

⎥
⎥
⎥
⎥
⎦

(10)

where the similarity between ui and itself is set to ∞.

Fig. 2 Directed graph of Example 1

Then, we show the directed graph G on U in Fig. 2.
From the Fig. 2, we can observe the propagation of users.
Without loss of generality, we takes u1 as the target user.
The set of nearest neighbor users of u1 is NU1 = {u2, u3},
which can be directly observed from both (10) and Fig. 2. In
other words, both u2 and u3 are direct neighbors of u1. Also,
we can see that u1 and u5 are direct neighbors of u2; thus,
u5 should be one of indirect neighbors of u1 according to
Definition 2. Similarly, u4 is also indirect neighbors of u1.
From Fig. 2, we can see that u1 can be propagated to both u4

and u5. In terms of Definition 1, we calculate A2 and have

A2 = A ⊗ A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
1 0 1 1 0
1 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

which indicates that a14 = 1 and a15 = 1. In other words,
u4 and u5 are indirect neighbors of u1. We can continue to
find indirect neighbors for u1 by A3, A4 and so on.

3.2 Prediction process

It is well known that the user-item matrix may be very
sparse. When we try to recommend a target item to a target
user, IRP predicts its rating value on this target item using
scores given by its direct neighbors. If some or all nearest
neighbors of the target user have not rated the target item,
IRP first ignores these neighbors until they have ratings.
The scores of these neighbors could be estimated from the
rating information of their own direct neighbors. In this

Table 2 Rating information in Example 1

User\Item t1 t2 t3 t4 t5 t6 t7 t8

u1 − − − 5 − 4 3 −
u2 − 3 2 3 − − − 2

u3 4 − 4 − 1 − 2 −
u4 − 2 4 2 − 4 − −
u5 2 − − − 2 5 − 3

L. Zhang et al.6814



way, the rating information is propagated among in the
neighborhood.

Let p be the current iteration and R̃(p) be the rating
matrix in the p-th iteration. In each iteration, IRP utilizes
the rating information provided by the previous iteration to
update the rating matrix. The element of v-th row and j -th
column in R̃(p) is denoted as r̃

(p)
vj that can be updated as:

r̃
(p)
vj =

{
rvj , if rvj > 0

r
(p−1)
v + �r̃

(p)
vj , otherwise

(11)

where rvj is the original rating of user uv on item tj , r
(p−1)
v

is the average rating score of user uv in the (p − 1)-th
iteration, and �r̃

(p)
vj is the predicted rating increment in the

p-th iteration. The prediction formulation for �r̃
(p)
vj in IRP

can be described as

�r̃
(p)
vj =

∑
ui∈NUv

w
(p−1)
ij sim(uv, ui)

(
r̃
(p−1)
ij − r

(p−1)
i

)

∑
ui∈NUv

|sim(uv, ui)|
(12)

where w
(p−1)
ij is the propagation reliability of the rating

r̃
(p−1)
ij in the (p − 1)-th iteration, and r̃

(p−1)
ij is the score of

user ui on item tj in the (p − 1)-th iteration.
Equation (11) implies that the predicted ratings would be

updated only for items that users do not rate on. According
to (12), �r̃

(p)
vj depends on the rating information of direct

neighbors of uv on tj . It is possible that all neighbors of

uv do not rate item tj . In this case, �r̃
(p)
vj is equal to zero,

and r̃
(p)
vj is equal to the average rating of uv at this iteration.

However, �r̃
(p)
vj can be changed as long as one of indirected

neighbors of uv has rated item tj such that r̃
(p)
vj could be

modified accordingly. Therefore, our method can iteratively
backtrack the predicted ratings.

In (12), it requires determine the propagation reliability
with iterations. Let W(p) be the propagation reliability
matrix in the p-th iteration. According to the description
above, IRP dynamically updates two matrices: the predicted
rating matrix R̃(p) and the propagation reliability matrix
W(p). Naturally, the initial rating matrix R̃(0) is the original
rating matrix R when p = 0. For p > 0, we follow (11) and
(12) to update R̃(p) based on both R̃(p−1) and W(p−1). The
initialization of W(0) has the following form:

w
(0)
ij =

{
1, if rij > 0
0, otherwise

(13)

On the basis of W(p−1), R̃(p−1) and R̃(p), the updating
formulation of W(p) can be expressed as:

w
(p)
ij =

{
λp, if �r̃

(p−1)
ij = 0 ∧ �r̃

(p)
ij �= 0

w
(p−1)
ij , otherwise

(14)

where the weight factor 0 ≤ λ ≤ 1. The formula (14)
indicates that the update of propagation reliability depends
on the predicted increment both the p-th iteration and the
(p − 1)-th iteration. Moreover, the propagation reliability
on a rating rij indicates that the reliability of this rating and

the propagation depth. For example, w
(p)
ij = 1 means that

r̃
(p)
ij is directly given by user ui ; thus, this rating is very

reliable and has a propagation depth of 0. While w
(p)
ij = λp

means that r̃
(p)
ij is estimated from neighbors of ui ; thus, the

reliability of this rating is discounted and has a propagation
depth of p. The greater the propagation depth is, the larger
the neighborhood.

3.3 Algorithm description and analysis

In fact, IRP can not only provide a predicted rating score
for a given target user on a given item, but also fill the
whole rating matrix with predicted ratings. We summary
the procedure of filling the rating matrix using IRP in
Algorithm 1. Basically, IRP has four steps. Step 1 is to
initialize two matrices. In Step 2, we need to know the
similarity between any two users in the user set U . Here,
the similarity measurement available can be applied to
our algorithm. In experiments, we adopt PCC (1) as the
similarity measurement, which is simple and efficient. Step
3 is the core of IRP, which is to alternately update R̃(p)

and W(p). The main iteration would be stopped when the
number of iteration is greater than the maximum number of
iterations allowed, or ‖R̃(p) − R̃(p−1)‖F ≤ θ holds true,
where ‖ · ‖ denotes the Frobenius norm of a matrix. Finally,
Step 4 returns the new rating matrix R̃∗.

According to Algorithm 1, we discuss the computational
complexity of IRP. Among four steps of IRP, the first step
is initialization and the fourth step is return; thus, these
two steps are neglected. Step 2 calculating the similarity
between users has the computational complexity of O(m2n)

in theory, where m is the number of users and n is the
number of items. It is worth noting that the number of
ratings given by users is far less than n, so the computational
complexity of this step should be less than O(m2n). In
the iteration process, there are at most MaxI ter iterations.
Each iteration uses K nearest neighbors to locally update the
values in the rating matrix. Both the rating matrix and the
propagation reliability matrix have the size of m × n; thus,
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the number of updated entries is much less than mn. Step 3
has the computational complexity of O((MaxI ter)Kmn),
where MaxI ter � m and K � m. In summary, the
computational complexity of IRP is O(m2n).

In the following, we continue Example 1 to comprehend
the procedure of IRP.

Example 2 (Continued from Example 1) In the user-item
rating matrix (9), the unrated items have ratings of 0. Here,
the task is to assign predicted ratings for those unrated items
in terms of IRP. According to Algorithm 1, we need to set
some parameters in advance. Let MaxI ter = 10, λ = 0.9,
and θ = 0.1. The similarity matrix has been given by (10)
in Example 1.

We first initialize the predicted user-item rating matrix by

R(0) = R =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 5 0 4 3 0
0 3 2 3 0 0 0 2
4 0 4 0 1 0 2 0
0 2 4 2 0 4 0 0
2 0 0 0 2 5 0 3

⎤

⎥
⎥
⎥
⎥
⎦

and the propagation reliability matrix by

W(0) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1
1 0 1 0 1 0 1 0
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎦

Next, we begin to alternately update the rating matrix and
the propagation reliability matrix. For p = 1, we have

R̃(1) =

⎡

⎢
⎢
⎢
⎢
⎣

5 5 4 5 2 4 3 4
0 3 2 3 0 3 2 2
4 2 4 3 1 3 2 0
3 2 4 2 2 4 2 3
2 2 4 2 2 5 2 3

⎤

⎥
⎥
⎥
⎥
⎦

and

W(1) =

⎡

⎢
⎢
⎢
⎢
⎣

0.9 0.9 0.9 1.0 0.9 1.0 1.0‘ 0.9
0.0 1.0 1.0 1.0 0.0 0.9 0.9 1.0
1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.0
0.9 1.0 1.0 1.0 0.9 1.0 0.9 0.9
1.0 0.9 0.9 0.9 1.0 1.0 0.9 1.0

⎤

⎥
⎥
⎥
⎥
⎦

where the updated entries are in bold type. The stop
conditions are not satisfied. For p = 2, we have

R̃(2) =

⎡

⎢
⎢
⎢
⎢
⎣

5 4 4 5 2 4 3 4
4 3 2 3 1 2 1 2
4 2 4 3 1 3 2 3
3 2 4 2 2 4 2 3
2 2 4 2 2 5 2 3

⎤

⎥
⎥
⎥
⎥
⎦

and

W(2) =

⎡

⎢
⎢
⎢
⎢
⎣

0.90 0.90 0.90 1.00 0.90 1.00 1.00 0.90
0.81 1.00 1.00 1.00 0.81 0.90 0.90 1.00
1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.81
0.90 1.00 1.00 1.00 0.90 1.00 0.90 0.90
1.00 0.90 0.90 0.90 1.00 1.00 0.90 1.00

⎤

⎥
⎥
⎥
⎥
⎦

The stop conditions are still not satisfied. In addition,
since all elements in R̃(2) are greater than zero, the
propagation reliability matrix would not be updated again.
In other words, W(p) = W(2) for p > 2. In the following
iterations, we have

R̃(3)=

⎡

⎢
⎢
⎢
⎢
⎣

5 4 4 5 2 4 3 4
4 3 2 3 1 2 1 2
4 3 4 3 1 3 2 3
3 2 4 2 1 4 2 3
2 2 4 2 2 5 2 3

⎤

⎥
⎥
⎥
⎥
⎦

, R̃(4)=

⎡

⎢
⎢
⎢
⎢
⎣

5 4 4 5 2 4 3 4
3 3 2 3 1 2 1 2
4 3 4 3 1 4 2 3
3 2 4 2 1 4 2 3
2 2 4 2 2 5 2 3

⎤

⎥
⎥
⎥
⎥
⎦

,

and R̃(5) =

⎡

⎢
⎢
⎢
⎢
⎣

5 4 4 5 2 4 3 4
3 3 2 3 1 2 1 2
4 3 4 3 1 4 2 3
3 2 4 2 1 4 2 3
2 2 4 2 2 5 2 3

⎤

⎥
⎥
⎥
⎥
⎦

When p = 5, the condition ‖R̃(5) − R̃(4)‖ < θ is satisfied.
Thus, IRP stops. The final rating matrix is R̃(5).

From Example 2, we see that values in the predicted
rating matrix are iteratively updated. Once the rating
information of neighbor users of uv on item tj is changed
in the current iteration, rvj would be updated in the
next iteration. After the fourth iteration, the rating scores
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Table 3 Description of datasets used in the experiments

Dataset Purpose #User #Item #Rating Sparsity Rating domain

ML-Latest Small Movie 671 9066 100,004 98.3% {0.5, 1, · · · , 5}
ML-100K Movie 943 1682 100,000 93.7% {1, 2, · · · , 5}
FilmTrust Movie 1508 2071 35,497 98.8% {0.5, 1, · · · , 4}
Netflix Movie 5000 16,295 1,066,148 98.7% {1, 2, · · · , 5}

are stabilized and no longer updated, which shows the
convergence of the IRP algorithm.

4 Experiments and analysis

To validate the performance of our method, we perform
experiments on four public datasets: ML-Latest-Small [27],
ML-100k [27], FilmTrust [28] and Netflix1 which have
been frequently used in literatures to test recommendation
algorithms. In this section, we first describe these datasets
and performance evaluation metrics, and then report
experimental results of our approach and other compared
ones. All numerical experiments are performed on a
personal computer with an Intel Core I5 processor with
8 GB RAM. This computer runs Windows 7, with Matlab
R2012b.

4.1 Datasets

Both ML-Latest-Small and ML-100k are from MovieLens
that was collected by the GroupLens Research Project at the
University of Minnesota [27]. A brief description of these
datasets is given in Table 3.

– ML-Latest-Small: This dataset describes a five-star
rating that movies were rated on a floating point scale of
0.5 (bad) to 5 (excellent) with scale of 0.5 and contains
100,004 ratings across 9,066 movies. The dataset was
created by 671 users from January 09, 1995 to October
16, 2016. Users were selected at random for inclusion.
All selected users had rated at least 20 movies. The
sparsity of ML-Latest-Small is 98.3%.

– ML-100k: The dataset was collected through the
MovieLens website (movielens.umn.edu) and has been
cleaned up, where users who had less than 20 ratings
or did not have complete demographic information
were removed from this dataset. This dataset contains
100,000 ratings provided by 943 users for 1,682
movies. Movies were rated on an integer scale 1 (bad)
to 5 (excellent). The sparsity of this matrix is 93.7%.

– FilmTrust: It is not a pre-packaged dataset and is a
small dataset crawled from the entire FilmTrust website

1http://www.netflixprize.com

in June 2011, which includes 35,497 ratings provided
by 1,508 users for 2,071 movies. Movies were rated
on a floating point scale 0.5 (bad) to 4 (excellent) with
scale of 0.5. The sparsity of FilmTrust reaches 98.8%.
Note that this dataset is very sparse and imbalanced in
that one user might have rated one item and another
might have rated dozens of items (and same is true for
items as well).

– Netflix: The dataset brings movies together that have
been rated from 1999 to 2005, including 480,189 users,
17,770 movies and more than 100 million rating data.
Users can choose different rating values from 1 to 5
to rate a movie. Besides, considering the size of the
dataset, we randomly select 5000 users who gave about
1,066,148 rating data for 16,295 items. The sparsity of
Netflix is 98.7%.

To evaluate the effectiveness of the proposed scheme,
each dataset is categorized into five subsets by apply-
ing five-fold cross-validation, which follows the method
described in [29] and [30]. In each trial, four subsets are
used for training and the remaining for test. As a result, we
report the average performance of five trials.

4.2 Experimental setting

Our proposed IRP method is a kind of prediction rating
algorithms, so we compare it with the existing rating
prediction algorithms mentioned in the related work,
including Sim-pred [24], Ave-pred [23], URP [26], and
RPA [25]. Besides, we also compare with other NCF
algorithms, such as Users’ tree accessed on subspace
(UTAOS) [31], Neighbor users by subspace clustering on
collaborative filtering (NUSCCF) [32], and Collaborative
filtering method based on the concept of “friend of a friend”
(CFfoaf) [33]. Here, we list the comparison methods that are
not mentioned in the related work.

– UTAOS[31]: UTAOS is a NCF method and is designed
for fast finding nearest neighbors for a given user by
constructing the nearest neighbor tree in the item space
of interest. In the prediction stage, UTAOS also uses
Sim-pred to predict the score of items.

– NUSCCF[32]: NUSCCF defines a new similarity
measurement method related to the construction of
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nearest neighbor tree and then constructs three nearest
neighbor sets in three item subspaces. NUSCCF is an
extension of UTAOS.

– CFfoaf[33]: CFfoaf alleviates the “grey sheep” prob-
lem by extending the set of nearest neighbors; that
is, there is no nearest neighbors for the target user.
For users who do not have any common rating
items, CFfoaf establishes the relationship between them
through intermediate friends. CFfoaf also adopts Sim-
pred to predict ratings.

As mentioned in Section 2.2.2, URP has its own
similarity measurement scheme (4). For other methods,
PCC (1) is adopted. In general, NCF algorithms provide
each user with an ordered list of unrated items, which is
termed as the recommendation list [34]. If the predicted
rating scores of items in the recommendation list are
greater than or equal to θ , they should be recommended
to the target user. We select three indexes to evaluate
the recommendation performance of compared algorithms,
including mean absolute error (MAE), recall, and coverage
[18, 35, 36].

MAE is the most commonly used measure to evaluate
the accuracy of recommendation algorithms and can be
calculated by

MAE = 1

m′
m′
∑

v=1

1

n′
v

n′
v∑

j=1

∣
∣
∣rvj − r̃∗

vj

∣
∣
∣ (15)

where rvj is the actual rating that user uv assigns to item
tj , r̃∗

vj represents the predicted rating of user uv on item tj ,
m′ is the total number of users in the test set, and n′

v is the
number of items that user uv can predict.

Recall indicates how many positive examples are in the
recommended list. The higher the recall rate is, the better the
recommendation performance. The formula of calculating
recall can be expressed as:

recall = 1

m′
m′
∑

v=1

∣
∣IRvp ∩ IRva

∣
∣

|IRva| (16)

where IRvp means the list of items that could be possibly
recommended to user uv , and IRva is the list of items that
user uv really likes in the test set.

Coverage is the ratio of recommended items to those
evaluated by target users, and can be defined as follows:

coverage =
∑m′

v=1

∣
∣IRvp ∩ Tvt

∣
∣

∑m′
v=1 |Tvt |

(17)

where Tvt represents the collection of items rated by user uv

in the test set.
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Fig. 4 Difference φ(p) vs. iteration number p under different K

4.3 Analysis of parameters for IRP

Our method has two parameters: the number of neighbors
K and the maximum number of iterations MaxI ter .
To analyze the effect of parameters on the prediction
performance of our method, we first perform 5-fold cross
validation on the ML-100K dataset.

Let K vary in the set {5, 10, 20, · · · , 100}, and the
maximum number of iterations in the range of 1 to 30.
The variation of average performance indexes vs. MaxI ter

is given in Fig. 3. The situations under different neighbor
numbers K = 5, K = 30, K = 60, and K = 100 are shown
in Fig. 3a, b, c, and d, respectively. The horizontal axis
of these sub-figures is the maximum number of iterations,
and the vertical axis is the performance index. It can be
seen from Fig. 3 that no matter what the value of K is,
performance curves tend to stabilize after the sixth iteration,
which proves that IRP is convergent.
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Fig. 5 Performance indexes vs. K

To further validate the convergence of IRP, we calculate
the difference between the predicted rating matrices in the
current and previous iterations. Let MaxI ter = 30 and
φ(p) = ‖R̃(p) − R̃(p−1)‖F , p = 1, · · · , MaxI ter . The
variation of φ(p) on p is shown in Fig. 4. We see that the
difference φ(p) approaches to 0 under different neighbor
numbers with the increase of iterations. The greater the
value of K is, the faster the difference φ(p) approaches to 0.
In addition, the difference φ(p) is infinitely close to 0 when
p = 6. As a result, IRP is convergent based on experimental
results. In the following experiments, let MaxI ter = 10
just to be sure.

The variation of average performance indexes vs. K on
the prediction performance of our method is given in Fig. 5,
which is a diagram with dual coordinates where curves of
MAE, recall, and coverage are on the left, and that of time
on the right. Observation on the curve of time indicates that
the running time has an approximately linear relationship
with K . The greater K is, the more time IRP needs.
Thus, K should not be too greater. From curves of three
performance indexes of MAE, recall, and coverage, we can
see a commonality of them. These indexes fluctuate so little
as K increases so that there is no significant change from
the curves. Taking into account the performance factors of
time, we set the number of neighbors K to 60 according to
the comparative experimental results.

4.4 Experimental results

To validate the performance of IRP, we compare our
methods with prediction methods on other four datasets.
Besides, we also compare it with other novel NCF methods,
UTAOS, NUSCCF, and CFfoaf that are mentioned in
Section 4.2. These methods all use the prediction scheme of
Sim-pred.

IRP RPA Ave-pred URP Sim-pred UTAOS NUSCCF
Method
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1 MAE
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Coverage

Fig. 6 Performance comparison on the ML-100k dataset
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Fig. 7 Performance comparison on the ML-Latest-Small dataset

Figure 6 shows the performance comparison of eight
methods on the ML-100k dataset, including average MAE,
recall, and coverage. From Fig. 6, we can have the following
conclusions. It can be seen from the MAE index that IRP
is the best (MAE is the lower the better in recommendation
systems), and it reduces the error rate by 6% compared
to RPA. From the recall index (the higher the better), our
method also achieves the best result. Although there is
no obvious improvement in coverage, we can see that our
method is still the best.

On the ML-Latest-Small dataset, We show the test the
prediction performance (MAE, coverage, recall) of eight
methods in Fig. 7. As can be seen from Fig. 7, we have
the similar conclusions as those from Fig. 6. MAE, recall
and coverage of our method are much better than compared
methods. On this dataset, MAE of IRP has a 10% lower
error rate than Ave-pred, 7% lower than Sim-pred, 2% lower
than RPA, which shows the validity of the neighborhood
propagation.

On the FilmTrust dataset, we list the comparison results
in Table 4, where the best results are in bold type. We test
the prediction performance (MAE, coverage, recall) of eight
NCF methods. Observation on Table 4 indicates that IRP is

Table 4 Performance comparison on the FilmTrust dataset

Method MAE Recall Coverage

IRP 0.6426 0.5876 0.8400

RPA 0.6592 0.3276 0.4670

Ave-pred 0.7612 0.2519 0.2937

URP 0.6556 0.5200 0.7900

Sim-pred 0.6884 0.5477 0.8225

UTAOS 0.7415 0.2545 0.3451

NUSCCF 1.0407 0.0660 0.0801

CFfoaf 0.6855 0.3909 0.3512

Table 5 Performance comparison on the Netflix dataset

Method MAE Recall Coverage

IRP 0.7554 0.5958 0.4943

RPA 0.8359 0.3045 0.4269

Ave-pred 0.9926 0.2358 0.3730

URP 0.9392 0.2027 0.3177

Sim-pred 0.9492 0.2380 0.3729

UTAOS 0.8638 0.4393 0.3360

NUSCCF 0.9808 0.1248 0.1615

CFfoaf 0.9676 0.2020 0.3192

much better in MAE, recall and coverage than all compared
methods. On this dataset, MAE of IRP is lower than all
other methods, and recall and coverage are higher. These
can prove the validity of our method.

On the Netflix dataset, we show the comparison results
of IPR with other methods in Table 5. Results in this
table lead to the same conclusion that is obtained from
the FilmTrust dataset. On each index, IRP achieves its best
among eight methods, followed by RPA. Compared with
RPA, IRP improves the prediction performance by 9.63% in
MAE, 19.13% in recall, and 6.74% in coverage.

5 Conclusion

This paper proposes a novel iterative rating prediction
algorithm for collaborative filtering-based recommender
systems. The key contribution of this work is to enable
a larger range of neighbor users to participate into the
prediction process. IRP iteratively updates the predicted
rating matrix using the rating information provided by
direct and indirect neighbors. At the same, the propagation
reliability matrix is updated with iterations, an element in
which represents the reliable degree of the corresponding
rating in the predicted rating matrix. Experiments are
executed on four datasets with different sparsity levels. On
the ML-100k, we analyze the effect of parameters on the
algorithm performance. The experimental results imply that
IRP can achieve to a stable state in a finite iterative number.
It is necessary to determine an appropriate neighbor number
considering the running time and the recommendation
performance. On ML-Latest-Small dataset, FilmTrust and
Netflix datasets, we validate the effectiveness of IRP.
Our method achieves the best MAE, recall, and coverage
among compared methods. Experiment results show that
our scheme is a promising approach for recommendation.

Although IRP has an excellent performance on four
datasets, there still are some points need study further. In
theory, IRP can use any similarity measurements. In this
paper, we choose PCC as the similarity method to measure
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the correlation between users, but it is undeniable that PCC
also has some defects, such as there is a negative score
in the dataset and PCC only considers absolute value. In
the future work, we would test our algorithms on other
similarity measurements to check the performance of IRP.
Besides, we know that the user-based CF is very similar to
the item-based CF. The difference is that the user-based CF
is to calculate the similarity between users, while the item-
based CF calculates the similarity between items. Thus, it is
worth investigating the performance of IRP when applying
it to item-based recommendation.

Appendix A. Proof of Theorem 1

Proof According to the definition of the neighborhood
relation, R can be represented by

R = {(ui, uj )|uj ∈ NK(ui) ⊂ U, ui ∈ U}

The construction of neighborhood relations depends on K

nearest neighbors of users. In the following, we prove the
properties of R.

1. Whatever measurement is adopted to search K nearest
neighbors, the distance between a user ui and itself is
always zero. For any ui in U , it is true that ui ∈ NK(ui).
Thus, (ui, ui) ∈ R. In other words, R is reflexive.

2. Whatever measurement is adopted to search K nearest
neighbors, the statement that if uj is one of K nearest
neighbors of ui but ui may be not one of K nearest
neighbors of uj is true. In other words, there are ui and
uj in U such that (ui, uj ) ∈ R but (uj , ui) /∈ R. Thus,
R is not symmetric.

3. Whatever measurement is adopted to search K nearest
neighbors, the statement that if uj ∈ UK(ui) and
uk ∈ UK(uj ) but uk /∈ UK(ui) is true. In other words,
there are ui and uj in U such that (ui, uj ) ∈ R and
(uj , uk) ∈ R but (ui, uk) /∈ R. Thus, R is not transitive.

That completes the proof of Theorem 1.
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