Skip to main content
Log in

A Convenient Category of Locally Preordered Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

As a practical foundation for a homotopy theory of abstract spacetime, we extend a category of certain compact partially ordered spaces to a convenient category of “locally preordered” spaces. We show that our new category is Cartesian closed that the forgetful functor to the category of compactly generated spaces creates all limits and colimits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borceux, F.: Handbook of categorical algebra 2: categories and structures. In: Encyclopedia of Mathematics and its Applications, vol. 51, pp. xviii+443. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  2. Brown, K.: The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem, algorithms and classification in combinatorial group theory, (Berekely, CA, 1989). Math. Sci. Res. Inst. Publ. 23, 137–163 (1992)

    Google Scholar 

  3. Bubenik, P., Worytkiewicz, K.: A model category for local pospaces. Homology Homotopy Appl. 8(1), 263–292 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Fahrenberg, U.: Directed homology. In: Proc. GETCO&CMCIM 2003, Electronic Notes in Theoretical Computer Science, vol. 100. Elsevier, Amsterdam (2004)

    Google Scholar 

  5. Fajstrup, L., Goubault, E., Haucourt, E., Raussen, M.: Components of the fundamental category. Appl. Categ. Structures 12(1), 84–108 (2004)

    Article  MathSciNet  Google Scholar 

  6. Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. Theoret. Comput. Sci. 357(1–3), 241–278 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gaucher, P.: A model category for the homotopy theory of concurrency. Homology Homotopy Appl. 5(1), 549–599 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Gierz, G., Hoffman, K.H., Keimel, K., Lawsonj, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and Applications, vol. 63. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  9. Goubault, E.: Geometry and concurrency: a user’s guide. Math. Structures Comput. Sci. 10(4), 411–425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goubault, E., Goubault-Larrecq, J.: On the geometry of intutionistic S4 proofs. Homology Homotopy Appl. 5(2), 137–209 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Goubault, E., Haucourt, E.: Components of the fundamental category II. Appl. Categ. Structures 15(4), 387–414 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grandis, M.: Directed homotopy theory. I.. Cahiers Topologie Géom. Differentielle Catég. 44(4), 281–316 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Grandis, M.: Directed homotopy theory. II. Homotopy constructs. Theory Appl. Categ. 10(14), 369–391 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Grandis, M.: Inequilogical spaces, directed homology and noncommutative geometry. Homology Homotopy Appl. 6(1), 413–437 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Grandis, M.: Ordinary and directed combinatorial homotopy, applied to image analysis and concurrency. Homology Homotopy Appl. 5(2), 211–231 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Haucourt, E.: Comparing topological models for concurrency. In: GETCO 2005 proceedings, San Francisco, 23–26 August 2005

  17. Kobayashi, Y.: Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra 65(3), 263–275 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kobayashi, Y., Otto, F., Squier, C.: A finiteness condition for rewriting systems. Theoret. Comput. Sci. 131, 271–294 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krishnan, S.: A homotopy theory of locally preordered spaces. Ph.D. thesis, University of Chicago, Chicago IL (2006)

  20. Lafont, Y.: A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier). J. Pure Appl. Algebra 98, 229–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nachbin, L.: Topology and order, translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Math. Stud. 4, 122 (1965)

    MathSciNet  Google Scholar 

  22. Patchkoria, A.: Homology and cohomology monoids of presimplicial semimodules. Bulletin of the Georgian Academy of Sciences 162(1), 9–12 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Pratt, V.: Modelling concurrency with geometry. In: Proc. 18th ACM Symp. on Principles of Programming Languages, pp. 311–322. New York, ACM (1991)

  24. Squier, C.C.: Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra 49, 201–217 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Steenrod, N.: A convenient category of spaces. Michigan Math. J. 14, 133–152 (1967)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeevi Krishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, S. A Convenient Category of Locally Preordered Spaces. Appl Categor Struct 17, 445–466 (2009). https://doi.org/10.1007/s10485-008-9140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9140-9

Keywords

Mathematics Subject Classifications (2000)

Navigation