Skip to main content
Log in

A gain reconfigurable time difference amplifier with self-adaptive linearity control

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Time difference amplifier (TDA) is often used in time domain interconnection, computing and measurement. Gain and linearity control are two main design issues. To reduce the nonlinear distortion, a novel self-adaptive pulse shrink circuit is proposed for the SR-latch based time difference amplifier. The multi-stage self-adaptive pulse shrink unit can compensate for the gain error caused by the high-order items and decrease the linearity problem. A programmable gain control circuit is also proposed to improve the gain range of the TDA. The proposed TDA including gain reconfiguration and linearity control is implemented by using SMIC 40nm CMOS technology. Post layout simulation demonstrates that the proposed TDA achieves from 8 to 100 s/s programmable gain within the input linear range \([-36\,\hbox {ps},36\,\hbox {ps}]\). The total area is \(21.186\,\upmu \hbox {m} \times 18.435\,\upmu \hbox {m}\). The total power consumption is \(31.45\,\upmu \hbox {W}\) when the gain is 10 and the toggle frequency is 100 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Sayal, A., Fathima, S., Nibhanupudi, S. S. T., & Kulkarni, J. P. (2019). 14.4 All-digital time-domain CNN engine using bidirectional memory delay lines for energy-efficient edge computing. In IEEE international solid-state circuits conference (ISSCC) (pp. 228–230).

  2. Wang, W., & Buckwalter, J. F. (2016). Source coding and preemphasis for double-edged pulsewidth modulation serial communication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(2), 555–566.

    Article  Google Scholar 

  3. Henzler, S. (2010). Time-to-digital converter basics. Time-to-digital converters (pp. 5–18). Dordrecht: Springer.

    Chapter  Google Scholar 

  4. Long, X., Wang, Q., Jiang, J., & Guan, N. (2017). An on-chip circuit for timing measurement of SRAM IP. In 2017 IEEE 12th international conference on ASIC (ASICON) (pp. 569–572).

  5. Kim, K. S., Kim, Y. H., Yu, W., & Cho, S. H. (2013). A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. IEEE Journal of Solid-State Circuits, 48(4), 1009–1017.

    Article  Google Scholar 

  6. Shingo, M., Tetsuya, I., Toru, N., Makoto, I., & Kunihiro, A. (2010). Time-to-digital converter based on time difference amplifier with non-linearity calibration. In European conference on IEEE solid-state circuits (ESSCIRC) (pp. 266–269).

  7. Shingo, M., Toru, N., Makoto, I., & Kunihiro, A. (2010). Cascaded time difference amplifier with differential logic delay cell. In Proceedings of the 15th Asia South Pacific design automation conference (pp. 355–356).

  8. Chiu, P., Liu, M., Tang, Q., & Kim, C. H. (2018). A 2.1 pJ/bit, 8 Gb/s ultra-low power in-package serial link featuring a time-based front-end and a digital equalizer. In 2018 IEEE Asian solid-state circuits conference (A-SSCC) (pp. 187–190).

  9. Abas, A. M., Bystrov, A., Kinniment, D. J., Maevsky, O. V., Russell, G., & Yakovlev, A. V. (2002). Time difference amplifier. Electronics Letters, 38(23), 1437–1438.

    Article  Google Scholar 

  10. Lee, M., & Abidi, A. A. (2008). A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE Journal of Solid-State Circuits, 43(4), 769–777.

    Article  Google Scholar 

  11. Wu, W., Baker, R. J., Bikkina, P., Long, Y., Levy, A., & Mikkola, E. (2018). Design and analysis of a feedback time difference amplifier with linear and programmable gain. IEEE Analog Integrated Circuits and Signal Processing, 94, 357–367.

    Article  Google Scholar 

  12. Kinniment, D. J., Bystrov, A., & Yakovlev, A. V. (2002). Synchronization circuit performance. IEEE Journal of Solid-State Circuits, 37(2), 202–209.

    Article  Google Scholar 

  13. Tisa, S., Lotito, A., Giudice, A., & Zappa, F. (2003). Monolithic time-to-digital converter with 20ps resolution. In European Conference on IEEE Solid-State Circuits (ESSCIRC) (pp. 465–468).

  14. Chen, P., Liu, S. L., & Wu, J. (2000). A CMOS pulse-shrinking delay element for time interval measurement. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(9), 954–958.

    Article  Google Scholar 

  15. Chen, C. C., Hwang, C. S., Lin, Y., & Liu, K. C. (2015). Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters. Review of Scientific Instruments, 86(12), 126113.

    Article  Google Scholar 

  16. Kim, S. J., & Cho, S. H. (2009). A variation tolerent reconfigurable time difference amplifier. In International SoC design conference (ISOCC) (pp. 301–304).

  17. Mandai, S., Nakura, T., Ikeda, M., & Asada, K. (2009). Cascaded time difference amplifier using differential logic delay cell. International SoC Design Conference (ISOCC) (pp. 194–197).

  18. Kim, B., Kim, H., & Kim, C. H. (2015). An 8 bit, 2.6 ps two-step TDC in 65 nm CMOS employing a switched ring-oscillator based time amplifier. In IEEE custom integrated circuits conference.

  19. Kim, K., Kim, Y., Yu, W., & Cho, S. (2012). A 7b, 3.75ps resolution two-step time-to-digital converter in 65nm CMOS using pulse-train time amplifier. In 2012 symposium on VLSI circuits (VLSIC) (pp. 192–193).

  20. Kwon, H., Lee, J., Sim, J., & Park, H. (2011). A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio. In IEEE Asian solid-state circuits conference (pp. 325–328).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, J., Wang, Q. et al. A gain reconfigurable time difference amplifier with self-adaptive linearity control. Analog Integr Circ Sig Process 107, 435–449 (2021). https://doi.org/10.1007/s10470-020-01739-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01739-1

Keywords

Navigation