Skip to main content
Log in

A 0.9 V 3rd-order single-opamp analog filter in 28 nm bulk-CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 28 nm-bulk-CMOS 3rd-order 132 MHz low-pass filter based on an improved Active-gm-RC stage. Challenges related to the design of analog circuits in 28 nm-bulk-CMOS process node are faced, mitigated and exploited by operating at both architecture and circuit design levels. The filter uses a single-opamp two-stage topology where both poles are used for synthesizing a 3rd-order low-pass transfer function. The proposed filter operates from a single 0.9 V supply voltage, consumes 340 µW and performs high linearity (IIP3 = 11.5 dBm at 21 and 22 MHz input tones) and large Signal-to-Noise ratio (58 dB). This enables one of the higher Figure-of-Merit (163.2 dB) with respect to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Moreover, some passive components (usually the capacitors) are implemented with a programmable array in order to align the filter transfer function to the target frequency response, even in presence of passive component value deviation due to Process, Voltage, or Temperature (PVT) variations. In this way, a tuning circuit is used to control the effectively connected components, and, as a consequence, the filter frequency response.

References

  1. De Matteis, M., Donno, A., D’Amico, S., & Baschirotto, A. (2016). 0.9 V third-order 132 MHz single-OPAMP analogue filter in 28 nm CMOS. Electronics Letters, 53(2), 77–79.

    Article  Google Scholar 

  2. Donno, A., D’Amico, S., De Matteis, M., Baschirotto, A. (2015). A 150 MHz 3rd-order single Opamp continuous-time analog filter in 28 nm CMOS technology. In Proceedings of the IEEE international conference on electronics, circuits, and systems, ICECS 2015, Cairo (Egypt). 6–9 December 2015. https://doi.org/10.1109/icecs.2015.7440274.

  3. D’Amico, S., De Matteis, M., Marinaci, S., Baschirotto, A. (2017). A 0.9 V 3rd-order single-Opamp analog filter in 28 nm CMOS-bulk. In Proceedings of the 7th IEEE international workshop on advances on sensors and interfaces, IWASI 2017, Vieste (Italy). 15–16 June 2017.

  4. D’Amico, S., Giannini, V., & Baschirotto, A. (2006). A 4th-order active-Gm-RC reconfigurable (UMTS/WLAN) filter. IEEE Journal of Solid-State Circuits, 41(7), 1630–1637.

    Article  Google Scholar 

  5. Khorramabadi, H., & Gray, P. R. (1984). High frequency CMOS continuous time filter. IEEE Journal of Solid-State Circuit, 16(6), 939–949.

    Article  Google Scholar 

  6. Pavan, S., Tsividis, Y. P., & Nagaraj, K. (2000). Widely programmable high frequency continuous time filters in digital CMOS technology. IEEE Journal of Solid-State Circuits, 35(4), 505, 511.

    Article  Google Scholar 

  7. Sansen, W. (1999). Distortion in elementary transistor circuits. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 46(3), 315–325.

    Article  Google Scholar 

  8. D’Amico, S., De Blasi, M., De Matteis, M., & Baschirotto, A. (2012). A 255 MHz programmable gain amplifier and low-pass filter for ultra low power impulse-radio UWB receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 337–345.

    Article  MathSciNet  Google Scholar 

  9. De Matteis, M., D’Amico, S., & Baschirotto, A. (2009). A 0.55 V 60 dB-DR fourth-order analog baseband filter. IEEE Journal of Solid-State Circuits, 44(9), 2525–2534.

    Article  Google Scholar 

  10. D’Amico, S., Conta, M., & Baschirotto, A. (2006). A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR. IEEE Journal of Solid-State Circuits, 41(12), 2713–2719.

    Article  Google Scholar 

  11. D’Amico, S., De Matteis, M., Baschirotto, A. (2008). A 6th-order 100 μA 280 MHz source-follower-based single-loop continuous-time filter. In IEEE international solid-state circuits conference, 2008 (ISSCC 2008), digest of technical papers (pp. 72596).

  12. Amir-Aslanzadeh, H., Pankratz, E. J., & Sanchez-Sinencio, E. (2009). A 1-V +31 dBm IIP3, reconfigurable, continuously tunable, power-adjustable active-RC LPF. IEEE Journal of Solid-State Circuits, 44(2), 495–508.

    Article  Google Scholar 

  13. Mobarak, M., Onabajo, M., Silva-Martinez, J., & Sanchez-Sinencio, E. (2010). Attenuation-predistortion linearization of CMOS OPAMPs with digital correction of process variations in OPAMP-C filter applications. IEEE Journal of Solid-State Circuits, 45(2), 351–367.

    Article  Google Scholar 

  14. Ye, L., Shi, C., Liao, H., Ru, H., & Wang, Y. (2013). Highly power-efficient active-RC filters with wide bandwidth-range using low-gain push-pull Opamps. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 95–107.

    Article  MathSciNet  Google Scholar 

  15. Oskooei, M. S., Masoumi, N., Kamarei, M., & Sjoland, H. (2011). A CMOS 4.35-mW +22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX Receivers. IEEE Journal of Solid-State Circuits, 46(6), 1382–1391.

    Article  Google Scholar 

  16. Harrison, J., Weste, N. (2003). A 500 MHz anti-alias filter using feed-forward opamps with local common mode feedback. In IEEE international solid-state circuits conference, 2003 (ISSCC 2003), digest of technical papers (pp. 72596).

  17. De Matteis, M., Pezzotta, A., D’Amico, S., & Baschirotto, A. (2015). A 33 MHz 70 dB-SNR super-source-follower-based low-pass analog filter. IEEE Journal of Solid-State Circuits, 50(7), 1516–1524.

    Article  Google Scholar 

  18. De Matteis, M., Pipino, A., Resta, F., Pezzotta, A., D’Amico, S., & Baschirotto, A. (2017). A 63-dB DR 22.5-MHz 21.5-dBm IIP3 fourth-order FLFB analog filter. IEEE Journal of Solid-State Circuits, 52(7), 1977–1986.

    Article  Google Scholar 

  19. Thyagarajan, S. V., Pavan, S., & Sankar, P. (2011). Active-RC filters using the Gm-assisted OTA-RC technique. IEEE Journal of Solid-State Circuits, 46(7), 1522–1533.

    Article  Google Scholar 

Download references

Acknowledgements

This activity is within the ScalTech28 project funded by INFN (Italian National Institute for Nuclear Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano D’Amico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, S., De Matteis, M., Donno, A. et al. A 0.9 V 3rd-order single-opamp analog filter in 28 nm bulk-CMOS. Analog Integr Circ Sig Process 98, 155–167 (2019). https://doi.org/10.1007/s10470-018-1261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1261-y

Keywords

Navigation