Skip to main content
Log in

A programmable analog hearing aid system-on-chip with frequency compensation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An analog hearing aid with the function of frequency compensation is proposed and implemented considering the human factors. Introducing the current-mode technique, a filter designed by the state space methodology is integrated in the hearing aid to offer the function which only appears in the DSP unit of digital hearing aid. Combined with the filter embedded in the driver circuit adopting the minimum current selecting technique, the enhance frequency compensation can well match to the common low-frequency hearing loss with a stopband attenuation of 80 dB/dec. Moreover, a low-noise automatic gain control (AGC) is presented to improve the programmability with discreet gains, knee points and compression ratios. To enhance the comfortable level, the attack time and release time is set 20 and 100 ms with a peak detector. The input-referred noise is below 5 μVrms. The hearing aid can drive a 16 Ω receiver at the supply voltage of 1 V. The die area is 2.3 × 1.5 mm2 (AGC) and 0.93 × 0.86 mm2 (driver) in a 0.13 μm standard CMOS process and 1 × 1 mm2 (filter) in a 0.35 μm standard CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. David, W., Mark, R., Tho, H., David, P., & James, N. (1992). A single-chip hearing aid with one volt switched-capacitor filter. In Proceedings of IEEE CICC, pp. 7.5.1–7.5.4.

  2. Gata, D. G. (2002). A 1.1 V 270μA mixed-signal hearing aid chip. IEEE Journal of Solid-State Circuit, 37(12), 1670–1678.

    Article  Google Scholar 

  3. Kim, S., Lee, S. J., Cho, N., Song, S.-J., & Yoo, H.-J. (2008). A fully integrated digital hearing aid chip with human factors considerations. IEEE of Solid-State Circuits, 43, 266–274.

    Article  Google Scholar 

  4. Silva-Martinez, J., Solis-Bustos, S., & Schellenberg, M. (1999). A CMOS hearing aid device. Analog Integrated Circuit and Signal Processing, 21, 163–172.

    Article  Google Scholar 

  5. Li, F., Yang, H., Liu, F., Yin, T., & Wang, X. (2012). Dual-mode gain control for 1 V CMOS hearing aid device with enhanced accuracy and energy-efficiency. Analog Integrated Circuits and Signal Processing, 72, 495–504.

    Article  Google Scholar 

  6. Gata, D. G., & Sjursen, W. (2002). A 1.1-V 270-μA mixed-signal hearing aid chip. IEEE Journal of Solid-State Circuits, 37, 1670–1678.

    Article  Google Scholar 

  7. Samet, M., Masmoudi, M., & Mouine, J. (1998). A new single chip automatic gain control for hearing aids. Proceedings of IEEE Canadian Conference of Electrical and Computer Engineering, 2, 758–761.

    Article  Google Scholar 

  8. Kim, S., Lee, J.-Y., Song, S.-J., Cho, N., & Yoo, H.-J. (2002). An energy-efficient analog front-end circuit for a sub-1-V digital hearing aid chip. IEEE Journal of Solid-State Circuits, 42(4), 876–882.

    Google Scholar 

  9. Kim, S., & Lee, J.-Y. (2005). A 0.9 V 67 μW analog front-end using adaptive-SNR technique for digital hearing aid. IEEE International Symposium on Circuits and Systems, 1, 740–743.

    Google Scholar 

  10. Razavi, B. (2001). Design of analog CMOS and integrated circuits. New York: McGraw-Hill Companies Inc.

    Google Scholar 

  11. Gan, R. Z., Feng, B., & Sun, Q. (2004). Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 32(6), 847–859.

    Article  Google Scholar 

  12. Katsuhiko, O. (2002). Modern control engineering. Upper Saddle River: Prentice-Hall Inc.

    Google Scholar 

  13. Kyehyung, L., Qingdong, M., et al. (2009). A 0.8 V, 2.6 mW, 88 dB dual-channel audio delta-sigma D/A converter with headphone driver. IEEE Journal of Solid-State Circuits, 44(3), 916–927.

    Article  Google Scholar 

  14. de Langen, K.-J., & Huijsing, J. H. (1998). Compact low-voltage power-efficient operational amplifier cells for VLSI. IEEE Journal of Solid-State Circuits, 33(10), 1482–1496.

    Article  Google Scholar 

  15. Serra-Graells, F., Gomez, L. & Farres, O. (2001). A true 1 V CMOS log-domain analog hearing-aid-on-a-chip. ESSCIRC 2001, Proceeding of the 27 European, 405–408.

Download references

Acknowledgments

Project supported by National Natural Science Foundation of China (Project 61106025, 61204045) and by the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haigang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, H., Li, F. et al. A programmable analog hearing aid system-on-chip with frequency compensation. Analog Integr Circ Sig Process 79, 227–236 (2014). https://doi.org/10.1007/s10470-014-0264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-014-0264-6

Keywords

Navigation