Skip to main content
Log in

Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish the limit of empirical spectral distributions of quaternion sample covariance matrices. Motivated by Bai and Silverstein (Spectral analysis of large dimensional random matrices, Springer, New York, 2010) and Marčenko and Pastur (Matematicheskii Sb, 114:507–536, 1967), we can extend the results of the real or complex sample covariance matrix to the quaternion case. Suppose \(\mathbf X_n = ({x_{jk}^{(n)}})_{p\times n}\) is a quaternion random matrix. For each \(n\), the entries \(\{x_{ij}^{(n)}\}\) are independent random quaternion variables with a common mean \(\mu \) and variance \(\sigma ^2>0\). It is shown that the empirical spectral distribution of the quaternion sample covariance matrix \(\mathbf S_n=n^{-1}\mathbf X_n\mathbf X_n^*\) converges to the Marčenko–Pastur law as \(p\rightarrow \infty \), \(n\rightarrow \infty \) and \(p/n\rightarrow y\in (0,+\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, S. L. (1995). Quaternionic quantum mechanics and quantum fields (Vol. 1). Oxford: Oxford University Press.

  • Akemann, G. (2005). The complex Laguerre symplectic ensemble of non-Hermitian matrices. Nuclear Physics B, 730(3), 253–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Akemann, G., Phillips, M. (2013). The interpolating airy kernels for the beta = 1 and beta = 4 elliptic Ginibre ensembles. arXiv:1308.3418.

  • Anderson, G. W., Guionnet, A., Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge: Cambridge University Press.

  • Bai, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. Part II. Sample covariance matrices. The Annals of Probability, 21(2), 649–672.

  • Bai, Z. D., Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (2nd ed.). New York: Springer.

  • Finkelstein, D., Jauch, J. M., Schiminovich, S., Speiser, D. (1962). Foundations of quaternion quantum mechanics. Journal of Mathematical Physics, 3(2), 207.

  • Kanzieper, E. (2002). Eigenvalue correlations in non-Hermitean symplectic random matrices. Journal of Physics A: Mathematical and General, 35(31), 6631.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers, J. B. (1999). Quaternions and rotation sequences. Princeton: Princeton University Press.

  • Marčenko, V. A., Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik, 114(4), 507–536.

  • Mehta, M. L. (2004). Random matrices (Vol. 142). Access online via Elsevier.

  • So, W., Thompson, R. C., Zhang, F. (1994). The numerical range of normal matrices with quaternion entries. Linear and Multilinear Algebra, 37(1–3), 175–195.

  • Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 20(1/2), 32–52.

    Article  MATH  Google Scholar 

  • Wolf, L. A. (1936). Similarity of matrices in which the elements are real quaternions. Bulletin of the American Mathematical Society, 42(10), 737–743.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, Y., Bai, Z. D. (2014). Convergence rates of the spectral distributions of large random quaternion self-dual Hermitian matrices. Journal of Statistical Physics, 157(6), 1207–1224.

  • Yin, Y., Bai, Z. D., Hu, J. (2013). On the semicircular law of large dimensional random quaternion matrices. Journal of Theoretical Probability (to appear). arXiv:1309.6937.

  • Yin, Y., Bai, Z. D., Hu, J. (2014). On the limit of extreme eigenvalues of large dimensional random quaternion matrices. Physics Letters A, 378(1617), 1049–1058.

  • Zhang, F. (1995). On numerical range of normal matrices of quaternions. Journal of Mathmatical and Physical Science, 29(6), 235–251.

    MathSciNet  MATH  Google Scholar 

  • Zhang, F. (1997). Quaternions and matrices of quaternions. Linear Algebra and Its Applications, 251, 21–57.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Dong Bai.

Additional information

Z. D. Bai was partially supported by CNSF 11171057, the Fundamental Research Funds for the Central Universities, and PCSIRT; J. Hu was partially supported by a grant CNSF 11301063.

Appendix

Appendix

In this section, some results are listed which are used in the proof of the main theorem.

Lemma 15

Suppose for any \(\eta >0\) \(\sum _{n=1}^{\infty }f\left( \eta ,n\right) <\infty \), then we can select a slowly decreasing sequence of constants \(\eta _n\rightarrow 0\) such that

$$\begin{aligned} \sum _{n=1}^{\infty }f\left( \eta _n,n\right) <\infty \end{aligned}$$

where \(f\) is a nonnegative function.

Similarly, if \(f(\eta ,n)\rightarrow 0\) for any fixed \(\eta >0\), then there exists a decreasing sequence \(\eta _n\rightarrow 0\) such that \(f(\eta _n,n)\rightarrow 0\).

Proof

Letting \(\eta =\frac{1}{m}\), one has \(\sum _{n=1}^{\infty }f\left( \frac{1}{m},n\right) <\infty .\) Moreover, there exists a increasing sequence \(N_m\) such that \(\sum _{n=N_m}^{\infty }f\left( \frac{1}{m},n\right) \le \frac{1}{2^m}\). Define a sequence \(\eta _n=\frac{1}{m}\) when \(N_m\le n<N_{m+1}\). We get

$$\begin{aligned} \sum _{n=1}^{\infty }f\left( \eta _n,n\right)&=\sum _{m=1}^{\infty }\sum _{n=N_m}^{N_{m+1}-1}f\left( \frac{1}{m},n\right) \le \sum _{m=1}^{\infty }\sum _{n=N_m}^{\infty }f\left( \frac{1}{m},n\right) \\&\le \sum _{n=1}^{N_1-1} f(1,n) +\sum _{m=1}^{\infty }\frac{1}{2^m}< \infty . \end{aligned}$$

This completes the proof of this lemma.\(\square \)

Lemma 16

(Corollary A.42 of Bai and Silverstein 2010) Let \({\mathbf A}\) and \({\mathbf B}\) be two \(p \times n\) matrices and denote the ESD of \({\mathbf S} = {\mathbf A}{{\mathbf A}^ * }\) and \( \widetilde{\mathbf S} = {\mathbf B}{{\mathbf B}^ * }\) by \({F^{\mathbf S}}\) and \({F^{\widetilde{\mathbf S}}}\), respectively. Then,

$$\begin{aligned} {L^4}({F^{\mathbf S}},{F^{\widetilde{\mathbf S}}}) \le \frac{2}{{{p^2}}}(\mathrm{tr}({\mathbf A}{{\mathbf A}^ * } + {\mathbf B}{{\mathbf B}^ * }))(\mathrm{tr}[({\mathbf A} - {\mathbf B}){({\mathbf A} - {\mathbf B})^ * }]), \end{aligned}$$

where \(L(\cdot ,\cdot )\) denotes the Lévy distance, that is,

$$\begin{aligned} L({F^{\mathbf S}},{F^{\widetilde{\mathbf S}}})=\inf \{\varepsilon :{F^{\mathbf S}\left( x-\varepsilon ,y-\varepsilon \right) -\varepsilon }\le {F^{\widetilde{\mathbf S}}}\le {F^{\mathbf S}\left( x+\varepsilon ,y+\varepsilon \right) +\varepsilon }\}. \end{aligned}$$

Lemma 17

(Theorem A.44 of Bai and Silverstein 2010) Let \({\mathbf A}\) and \({\mathbf B}\) be \(p \times n\) complex matrices. Then,

$$\begin{aligned} \Vert {{F^{{\mathbf A}{{\mathbf A}^ * }}} - {F^{{\mathbf B}{{\mathbf B}^ * }}}} \Vert _{KS} \le \frac{1}{p}\mathrm{rank}\left( {\mathbf A} - {\mathbf B}\right) . \end{aligned}$$

Lemma 18

(Bernstein’s inequality) If \(\varvec{\tau }_1,\ldots ,\varvec{\tau }_n\) are independent random variables with means zero and uniformly bounded by \(b\), then, for any \(\varepsilon > 0\),

$$\begin{aligned} \mathrm{P}\left( \left| \sum _{j=1}^{n}\varvec{\tau }_j\right| \ge \varepsilon \right) \le 2{\exp }\left( -\varepsilon ^2/\left[ 2(B_n^2+b\varepsilon )\right] \right) \end{aligned}$$

where \( B_n^2={ E}(\varvec{\tau }_1+\cdots +\varvec{\tau }_n)^2.\)

Lemma 19

(see \(\left( A.1.12\right) \) of Bai and Silverstein 2010) Let \(z = u + iv, v > 0, \) and \({\mathbf A}\) be an \(n \times n\) Hermitian matrix. Denote by \({{\mathbf A}_k}\) the kth major sub-matrix of \({\mathbf A}\) of order \((n-1)\), to be the matrix resulting from deleting the \(k\)th row and column from \({\mathbf A}\). Then,

$$\begin{aligned} | {\mathrm{tr}{{({\mathbf A} - z{\mathbf I}_n)}^{ - 1}} -{ \mathrm tr}{{({{\mathbf A}_k} - z{{\mathbf I}_{n - 1}})}^{ - 1}}} | \le \frac{1}{\upsilon }. \end{aligned}$$

Lemma 20

Suppose that the matrix \(\varvec{\Sigma }\) has the partition as given by \(\begin{pmatrix}\varvec{\Sigma }_{11}&{}\quad \varvec{\Sigma }_{12}\\ \varvec{\Sigma }_{21}&{}\quad \varvec{\Sigma }_{22}\end{pmatrix}\). If \(\varvec{\Sigma }\) and \(\varvec{\Sigma }_{11}\) are nonsingular, then the inverse of \(\varvec{\Sigma }\) has the form

$$\begin{aligned} \varvec{\Sigma }^{-1}=\left( \begin{array}{l@{\quad }l} \varvec{\Sigma }_{11}^{-1}+\varvec{\Sigma }_{11}^{-1}\varvec{\Sigma }_{12}\varvec{\Sigma }_{22.1}^{-1}\varvec{\Sigma }_{21}\varvec{\Sigma }_{11}^{-1}&{}\quad -\varvec{\Sigma }_{11}^{-1}\varvec{\Sigma }_{12}\varvec{\Sigma }_{22.1}^{-1}\\ -\varvec{\Sigma }_{22.1}^{-1}\varvec{\Sigma }_{21}\varvec{\Sigma }_{11}^{-1}&{}\quad \varvec{\Sigma }_{22.1}^{-1} \end{array}\right) \end{aligned}$$

where \(\varvec{\Sigma }_{22.1}=\varvec{\Sigma }_{22}-\varvec{\Sigma }_{21}\varvec{\Sigma }_{11}^{-1}\varvec{\Sigma }_{12}\).

Lemma 21

(Burkholder’s inequality) Let \(\{ {{\mathbf X}_k}\} \) be a complex martingale difference sequence with respect to the increasing \(\sigma \)-field. Then, for \(p > 1,\)

$$\begin{aligned} { E}{\left| {\sum _k {{{\mathbf X}_k}} } \right| ^p} \le {K_p}{ E}{\left( {\sum _k{| {{{\mathbf X}_k}} |} ^2}\right) ^{p/2}}. \end{aligned}$$

Lemma 22

(Rosenthal’s inequality) Let \( {\mathbf X}_i \) be independent with zero means, then we have, for some constant \(C_k\),

$$\begin{aligned} { E}\left| \sum _i {\mathbf X}_i\right| ^{2k} \le C_k\left( \sum _i{ E}\left| {\mathbf X}_i\right| ^{2k}+\left( \sum _i { E}\left| {\mathbf X}_i\right| ^2\right) ^k\right) . \end{aligned}$$

Lemma 23

(Lemma 2.14 of Bai and Silverstein 2010) Let \(f_1,f_2,\ldots \) be analytic in \(D\), a connected open set of \(\mathbb C\), satisfying \(\left| f_n\left( z\right) \right| \le M\) for every \(n\) and \(z\) in \(D\), and \(f_n\left( z\right) \) converges as \(n \rightarrow \infty \) for each \(z\) in a subset of \(D\) having a limit point in \(D\). Then, there exists a function \(f\) analytic in \(D\) for which \(f_n\left( z\right) \rightarrow f\left( z\right) \) and \(f_n^{\prime } \rightarrow f^{\prime }\left( z\right) \) for all \(z\in D\). Moreover, on any set bounded by a contour interior to \(D\), the convergence is uniform and \(\{f_n^{\prime }\left( z\right) \}\) is uniformly bounded.

Lemma 24

(Theorem B.9 of Bai and Silverstein 2010) Assume that \(\left\{ G_n\right\} \) is a sequence of functions of bounded variation and \(G_n\left( -\infty \right) =0\) for all \(n\). Then,

$$\begin{aligned} \lim _{n\rightarrow \infty }{\mathbf m}_{G_n}\left( z\right) ={\mathbf m}\left( z\right) \quad \forall z\in D \end{aligned}$$

where \(D\equiv \left\{ z\in \mathbb {C}:\mathfrak {I}z>0\right\} \) if and only if there is a function of bounded variation \(G\) with \(G\left( -\infty \right) =0\) and Stieltjes transform \({\mathbf m}\left( z\right) \) and such that \(G_n\rightarrow G\) vaguely.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Bai, Z.D. & Hu, J. Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices. Ann Inst Stat Math 68, 765–785 (2016). https://doi.org/10.1007/s10463-015-0514-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-015-0514-0

Keywords

Navigation