Skip to main content
Log in

A Microscopic Spiking Neuronal Network for the Age-Structured Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We introduce a microscopic spiking network consistent with the age-structured/renewal equation proposed by Pakdaman, Perthame and Salort. It is a jump process interacting through a set of global activity variables with random delays. We show the well-posedness of the particle system and the mean-field equation. Moreover, by studying the tightness of the empirical measure, we prove the propagation of chaos property. Eventually, we quantify the rate of convergence by using the coupling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We use sometimes the term particles to emphasize the relationship with kinetic theory and particle systems.

References

  1. Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Math. Models Methods Appl. Sci. 21(11), 2179–2210 (2011). arXiv:1009.5166

    Article  MathSciNet  MATH  Google Scholar 

  2. De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015). arXiv:1312.2128

    Article  MathSciNet  MATH  Google Scholar 

  4. Fournier, N., Löcherbach, E.: On a toy model of interacting neurons (2014). Available on: arXiv:1410.3263

  5. Godinho, D., Quininao, C.: Propagation of chaos for a sub-critical Keller-Segel model. Ann. Inst. Henri Poincaré 51(3), 965–992 (2015). arXiv:1306.3831

    Article  MathSciNet  MATH  Google Scholar 

  6. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes (1989)

    MATH  Google Scholar 

  7. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003). doi:10.1007/978-3-662-05265-5

    Book  MATH  Google Scholar 

  8. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956)

    Google Scholar 

  9. McKean, H.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21(5), 343–367 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. McKean, H.P.: Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations. Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967, pp. 41–57 (1967)

    Google Scholar 

  11. Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23(1), 55–75 (2010). doi:10.1088/0951-7715/23/1/003

    Article  MathSciNet  MATH  Google Scholar 

  12. Pakdaman, K., Perthame, B., Salort, D.: Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013). doi:10.1137/110847962

    Article  MathSciNet  MATH  Google Scholar 

  13. Pakdaman, K., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J. Math. Neurosci. 4, Art. 14 (2014). doi:10.1186/2190-8567-4-14

    Article  MathSciNet  MATH  Google Scholar 

  14. Quiñinao, C., Touboul, J.: Limits and dynamics of randomly connected neuronal networks. Acta Appl. Math. 136(1), 167–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robert, P., Touboul, J.D.: On the dynamics of random neuronal networks (2014). Avalaible on: arXiv:1410.4072

  16. Sznitman, A.S.: Équations de type de Boltzmann, spatialement homogenes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66(4), 559–592 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math., vol. 1464, pp. 165–251. Springer, Berlin (1991). doi:10.1007/BFb0085169

    Google Scholar 

  18. Tanabe, S., Pakdaman, K.: Noise-induced transition in excitable neuron models. Biol. Cybern. 85(4), 269–280 (2001)

    Article  MATH  Google Scholar 

  19. Touboul, J.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149(4), 569–597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Touboul, J., et al.: Propagation of chaos in neural fields. Ann. Appl. Probab. 24(3), 1298–1328 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vibert, J., Champagnat, J., Pakdaman, K., Pham, J.: Activity in sparsely connected excitatory neural networks: effect of connectivity. Neural Netw. 11(3), 415–434 (1998). The official journal the International Neural Network Society

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONICYT’s Programa de Investigación Asociativa (PIA), Anillo Código SOC1405 and CONICYT’s Becas Chile Program. The author thanks Jonathan Touboul and Stéphane Mischler for their help in the mathematical analysis of the model and insightful discussions on spiking networks. The author also warmly thank the referees for their suggestions that allowed to improve the presentation of the paper and the extension of some results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Quiñinao.

Appendix:  General Theorems for Stochastic Processes

Appendix:  General Theorems for Stochastic Processes

1.1 Remarks on the Proof of Lemma 13

Our first task is to prove that \((X_{t},M_{t})\) is a semi martingale. To do so, recall that at the end of the proof of Lemma 13, we got that for any \(\varphi \in C_{b} ^{2}({\mathbb {R}}_{+}^{2})\), the process

$$\begin{aligned} \begin{aligned}[b] &\varphi (X_{t},M_{t})-\varphi (X_{0},M_{0}) \\ &\quad {}- \int_{0}^{t}\partial_{m} \varphi (X_{s},M_{s}) \biggl[-\alpha M_{s}+\alpha J \int_{0}^{s}{\mathbb {E}}\bigl[a(X _{s-s'},M_{s-s'}) \bigr]b\bigl(ds'\bigr) \biggr]\,ds \\ &\quad {}- \int_{0}^{t}\partial_{x}\varphi (X_{s},M_{s})\,ds- \int_{0}^{t} a(X _{s},M_{s}) \bigl(\varphi (0,M_{s})-\varphi (X_{s},M_{s}) \bigr)\,ds, \end{aligned} \end{aligned}$$
(31)

is a local martingale. Then, by using Jacod-Shiryaev [7, Theorem II.2.42, p. 86] adequately we can conclude. Indeed, the Theorem writes

Theorem 14

There is equivalence between:

  • \((X_{t},M_{t})\) is a semimartingale, and it admits the characteristics \((B,0,\nu )\); i.e., \((X_{t},M_{t})\) writes

    $$\begin{aligned} (X_{t},M_{t})= (X_{0},M_{0})+{\mathcal {M}}^{c}+B, \end{aligned}$$

    where \({\mathcal {M}}^{c}\) is the continuous local martingale of the canonical decomposition, \(B\) is predictable and \(\nu \) is a predictable random measure on \({\mathbb {R}}_{+}\times {\mathbb {R}}_{+}^{2}\), namely the compensator of the random measure associated to the jumps of \(X\).

  • For each bounded function \(\varphi \in C^{2}({\mathbb {R}}_{+}^{2})\), the process

    $$\begin{aligned} &\varphi (X_{t},M_{t})-\varphi (X_{0},M_{0}) - \int_{0}^{t}\partial _{x}\varphi (X_{s-},M_{s-})\, dB^{X}_{s}- \int_{0}^{t}\partial_{m} \varphi (X_{s-},M_{s-})\, dB^{M}_{s} \\ &\quad {}- \int_{0}^{t} \int_{{\mathbb {R}}_{+}^{2}} \bigl\{ \varphi (X_{t-}+x,M_{t-}+m)- \varphi (X_{t-},M_{t-}) \\ &\quad {} -x \partial_{x}\varphi (X_{t-},M_{t-})-m \partial_{m}\varphi (X_{t-},M_{t-}) \bigr\} \nu (ds,dx,dm) \end{aligned}$$

    is a local martingale.

Then, in our case of study, by choosing the characteristics

$$\begin{aligned} B^{X}_{t}&= \int_{0}^{t} \bigl[1+X_{s} a(X_{s-},M_{s-}) \bigr]\,ds, \\ B^{M}_{t} &= \int_{0}^{t} \biggl[-\alpha M_{s}+\alpha J \int_{0}^{s}{\mathbb {E}}\bigl[a(X _{s-s'},M_{s-s'}) \bigr] b\bigl(ds'\bigr) \biggr]\,ds, \end{aligned}$$

and

$$ \nu (ds,dx,dm)= a(X_{s-},M_{s-})\,ds \delta_{-X_{s-}}(dx)\delta _{0}(dm), $$

we get that \((X_{t},M_{t})\) is indeed a semi martingale.

Now, we have the necessary conditions to prove that the process \((X_{t},M_{t})\) solves (8)–(9). This is actually an application of Jacod-Shiryaev [7, Theorem III.2.26, p. 157]. Consider the stochastic differential equation

$$ \textstyle\begin{cases} (X_{0},M_{0}) = (\xi_{x},\xi_{m}) \\ d(X_{t},M_{t}) = \beta (t,X_{t},M_{t})\,dt \\ \qquad\qquad \quad {}+\delta (t,X_{t-},M_{t-},u) ({\mathcal {N}}(du,dt)-q(du,dt) ), \end{cases} $$
(32)

where \({\mathcal {N}}\) is a standard Poisson random measure with intensity measure

$$\begin{aligned} q(du,dt)=du\otimes dt. \end{aligned}$$

Hence, if \({\mathcal {N}}\) has a jump at \((t,u)\), then \(\Delta (X_{t},M _{t})=\delta (t,X_{t-},M_{t-},u)\).

Theorem 15

Let \(\eta \) be a suitable initial condition (i.e., a probability on \({\mathbb {R}}_{+}^{2}\)), and \(\beta ,\delta \) be

$$ \textstyle\begin{cases} \beta =\bigl(\beta^{1},\beta^{2}\bigr),\ \textit{a Borel function:}\ {\mathbb {R}}_{+} \times {\mathbb {R}}_{+}^{2}\rightarrow {\mathbb {R}}_{+}^{2}, \\ \delta =\bigl(\delta^{1},\delta^{2}\bigr),\ \textit{a Borel function:}\ {\mathbb {R}}_{+}\times {\mathbb {R}}_{+}^{2}\times {\mathbb {R}}_{+}\rightarrow {\mathbb {R}}_{+}^{2}. \end{cases} $$

The set of all solution-measures (or weak solutions) to (32) with initial condition \(\eta \) is the set of all solutions to a martingale problem on the canonical space where the characteristics \((B,0,\nu )\) are given by

$$ B^{i}_{t}(w)= \int_{0}^{t} \beta^{i} \bigl(s,X_{s}(w),M_{s}(w)\bigr)\,ds, $$

and \(\nu \) is namely the compensator of the random measure associated to the jumps of \((X_{t},M_{t})\).

We notice that \((X_{t},M_{t})\) indeed solves the Martingale problem given by (31), therefore it is a solution-measure to (32), i.e., there exists a Poisson measure \({\mathcal {N}}(ds, du)\) on \({\mathbb {R}}_{+} \times {\mathbb {R}}_{+}\) with intensity \(ds\,du\) such that \((X_{t},M_{t})\) solves (8)–(9), and Lemma 13 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiñinao, C. A Microscopic Spiking Neuronal Network for the Age-Structured Model. Acta Appl Math 146, 29–55 (2016). https://doi.org/10.1007/s10440-016-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0056-3

Mathematics Subject Classification

Keywords

Navigation