Skip to main content
Log in

A Wireless Pressure Sensor for Continuous Monitoring of Intraocular Pressure in Conscious Animals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An important aspect of eye health in humans and animal models of human diseases is intraocular pressure (IOP). IOP is typically measured by hand with a tonometer, so data are sparse and sporadic and round-the-clock variations are not well characterized. Here we present a novel system for continuous wireless IOP and temperature measurement in small animals. The system consists of a cannula implanted in the anterior chamber of the eye connected to pressure sensing electronics that can be worn by rats or implanted in larger mammals. The system can record IOP with 0.3 mmHg accuracy and negligible drift at a rate of 0.25 Hz for 1–2 months on a regulated battery or indefinitely at rates up to 250 Hz via RF energy harvesting. Chronic recordings from conscious rats showed that IOP follows a diurnal rhythm, averaging 16.5 mmHg during the day and 21.7 mmHg at night, and that the IOP rhythm lags a diurnal rhythm in body temperature by 2.1 h. IOP and body temperature fluctuations were positively correlated from moment-to-moment as well. This technology allows researchers to monitor for the first time the precise IOP history of rat eyes, a popular model for glaucoma studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akaishi, T., N. Ishida, A. Shimazaki, H. Hara, and Y. Kuwayama. Continuous monitoring of circadian variations in intraocular pressure by telemetry system throughout a 12-week treatment with timolol maleate in rabbits. J. Ocul. Pharmacol. Therap. 21:436–444, 2005.

    Article  CAS  Google Scholar 

  2. Asrani, S., R. Zeimer, J. Wilensky, D. Gieser, S. Vitale, and K. Lindenmuth. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J. Glaucoma. 9:134–142, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Bello, S. A., S. Malavade, and C. L. Passaglia. Development of a smart pump for monitoring and controlling intraocular pressure. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1735-y.

    PubMed  Google Scholar 

  4. Bengtsson, B., M. C. Leske, L. Hyman, and A. Heijl. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmol. 114:205–209, 2007.

    Article  Google Scholar 

  5. Collins, C. C. Miniature passive pressure transensor for implanting in the eye. IEEE Trans. Biomed. Eng. 14:74–83, 1967.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper, R. L., D. Beale, and I. J. Constable. Passive radiotelemetry of intraocular pressure in vivo: calibration and validation of continual scleral guard-ring applanation transensors in the dog and rabbit. Invest. Ophthalmol. Vis Sci. 18:930–938, 1979.

    CAS  PubMed  Google Scholar 

  7. Downs, J. C., C. F. Burgoyne, W. P. Seigfreid, J. F. Reynaud, N. G. Strouthidis, and V. Sallee. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Invest. Ophthalmol. Vis. Sci. 52:7365–7375, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frampton, P., R. Da, and B. Brown. Diurnal variation of intraocular pressure and the overriding effects of sleep. Am. J. Optom. Physiol. Opt. 64:54–61, 1987.

    Article  CAS  PubMed  Google Scholar 

  9. Greene, M. E., and B. G. Gilman. Intraocular pressure measurement with instrumented contact lenses. Invest. Ophthalmol. 13:299–302, 1974.

    CAS  PubMed  Google Scholar 

  10. Heijl, A., M. C. Leske, B. Bengtsson, L. Hyman, B. Bengtsson, and M. Hussein. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120:1268–1279, 2002.

    Article  PubMed  Google Scholar 

  11. Ho, J. S., A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Poon. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. 111:7974–7979, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. IEEE. Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. New York: IEEE, 1999.

    Google Scholar 

  13. Li, R., and J. H. Liu. Telemetric monitoring of 24 h intraocular pressure in conscious and freely moving C57BL/6J and CBA/CaJ mice. Mol. Vis. 14:745–749, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, J. H., D. F. Kripke, M. D. Twa, R. E. Hoffman, S. L. Mansberger, K. M. Rex, C. A. Girkin, and R. N. Weinreb. Twenty-four-hour pattern of intraocular pressure in the aging population. Invest. Ophthalmol. Vis. Sci. 40:2912–2917, 1999.

    CAS  PubMed  Google Scholar 

  15. Liu, J. H., X. Zhang, D. F. Kripke, and R. N. Weinreb. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest. Ophthalmol. Vis. Sci. 44:1586–1590, 2003.

    Article  PubMed  Google Scholar 

  16. Mansouri, K., F. A. Medeiros, A. Tafreshi, and R. N. Weinreb. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch. Ophthalmol. 130:1534–1539, 2012.

    Article  Google Scholar 

  17. Mansouri, K., and T. Shaarawy. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br. J. Ophthalmol. 95:627–629, 2011.

    Article  PubMed  Google Scholar 

  18. McLaren, J. W., R. F. Brubaker, and J. S. Fitzsimon. Continuous measurement of intraocular pressure in rabbits by telemetry. Invest. Ophthalmol. Vis. Sci. 37:966–975, 1996.

    CAS  PubMed  Google Scholar 

  19. Melki, S., A. Todani, and G. Cherfan. An implantable intraocular pressure transducer: initial safety outcome. JAMA Ophthalmol. 132:1221–1225, 2014.

    Article  PubMed  Google Scholar 

  20. Montgomery, K. L., A. J. Yeh, J. S. Ho, V. Tsao, S. Mohan Iyer, L. Grosenick, E. A. Ferenczi, Y. Tanabe, K. Deisseroth, S. L. Delp, and A. S. Poon. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods. 12:969–974, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore, C. G., C. J. Elaine, and C. M. John. Circadian rhythm of intraocular pressure in the rat. Curr. Eye Res. 15:185–191, 1996.

    Article  CAS  PubMed  Google Scholar 

  22. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Sys. 5:48–63, 2011.

    Article  CAS  Google Scholar 

  23. Refinetti, R., H. Ma, and E. Satinoff. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp. Gerontol. 25:533–543, 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Leske M.C., Connell A.M., Wu S.Y., Hyman L.G and Schachat A.P. Risk factors for open-angle glaucoma: the Barbados Eye Study. Arch. Ophthalmol. 113:918–924, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Todani, A., I. Behlau, M. A. Fava, F. Cade, D. G. Cherfan, F. R. Zakka, F. A. Jakobiec, Y. Gao, C. H. Dohlman, and S. A. Melki. Intraocular pressure measurement by radio wave telemetry. Invest. Ophthalmol. Vis. Sci. 52:9573–9580, 2011.

    Article  PubMed  Google Scholar 

  26. Walter, P. Development of a completely encapsulated intraocular pressure sensor. Ophthalmic Res. 32:278–284, 1999.

    Article  Google Scholar 

  27. Wang, G., W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun. A dual band wireless power and data telemetry for retinal prosthesis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:4392–4395, 2006.

    PubMed  Google Scholar 

  28. Wentz, C. T., J. G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez, and E. S. Boyden. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8:046021, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilensky, J. T. Diurnal variations in intraocular pressure. Trans. Am. Ophthalmol. Soc. 89:757–790, 1991.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH Grant R21 EY023376 and a Thomas R. Lee Award from BrightFocus Foundation. The authors thank Mr. Dan Capecci for assistance with wireless communication programs. The following intellectual interests are declared: U.S. Patents 9022968B2 and 9314375B1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Passaglia.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, S.A., Passaglia, C.L. A Wireless Pressure Sensor for Continuous Monitoring of Intraocular Pressure in Conscious Animals. Ann Biomed Eng 45, 2592–2604 (2017). https://doi.org/10.1007/s10439-017-1896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1896-3

Keywords

Navigation