Skip to main content
Log in

Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  4. Blemker, S. S., D. S. Asakawa, G. E. Gold, and S. L. Delp. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25:441–451, 2007.

    Article  PubMed  Google Scholar 

  5. Buford, Jr, W. L., F. M. Ivey, Jr, J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, and A. A. Stewart. Muscle balance at the knee–moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5:367–379, 1997.

    Article  PubMed  Google Scholar 

  6. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  7. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  8. Delp, S. L., D. A. Ringwelski, and N. C. Carroll. Transfer of the rectus femoris: effects of transfer site on moment arms about the knee and hip. J. Biomech. 27:1201–1211, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Gaffney, B. M., M. D. Harris, B. S. Davidson, J. E. Stevens-Lapsley, C. L. Christiansen, and K. B. Shelburne. Multi-joint compensatory effects of unilateral total knee arthroplasty during high-demand tasks. Ann. Biomed. Eng. 44:2529–2541, 2015.

    Article  PubMed  Google Scholar 

  10. Garner, B. A., and M. G. Pandy. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3:1–30, 2000.

    Article  Google Scholar 

  11. Grood, E. S., W. J. Suntay, F. R. Noyes, and D. L. Butler. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J. Bone Joint Surg. Am. 66:725–734, 1984.

    Article  CAS  PubMed  Google Scholar 

  12. Hollister, A. M., S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 290:259–268, 1993.

    Google Scholar 

  13. Ito, M., H. Akima, and T. Fukunaga. In vivo moment arm determination using B-mode ultrasonography. J. Biomech. 33:215–218, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Ivester, J. C., A. J. Cyr, M. D. Harris, M. J. Kulis, P. J. Rullkoetter, and K. B. Shelburne. A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics. J. Med. Devices 9:041009, 2015.

    Article  Google Scholar 

  15. Johal, P., A. Williams, P. Wragg, D. Hunt, and W. Gedroyc. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J. Biomech. 38:269–276, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Jorgensen, M. J., W. S. Marras, K. P. Granata, and J. W. Wiand. MRI-derived moment-arms of the female and male spine loading muscles. Clin. Biomech. (Bristol, Avon) 16:182–193, 2001.

    Article  CAS  Google Scholar 

  17. Kepple, T. M., A. S. Arnold, S. J. Stanhope, and K. L. Siegel. Assessment of a method to estimate muscle attachments from surface landmarks: a 3D computer graphics approach. J. Biomech. 27:365–371, 1994.

    Article  CAS  PubMed  Google Scholar 

  18. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, 3rd, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Article  CAS  PubMed  Google Scholar 

  19. Miranda, D. L., J. B. Schwartz, A. C. Loomis, E. L. Brainerd, B. C. Fleming, and J. J. Crisco. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J. Biomech. Eng. 133:121002, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moissenet, F., L. Cheze, and R. Dumas. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47:50–58, 2014.

    Article  PubMed  Google Scholar 

  21. Myers, C. A., P. J. Laz, K. B. Shelburne, and B. S. Davidson. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann. Biomed. Eng. 43:1098–1111, 2015.

    Article  PubMed  Google Scholar 

  22. Myers, C. A., M. R. Torry, D. S. Peterson, K. B. Shelburne, J. E. Giphart, J. P. Krong, S. L. Woo, and J. R. Steadman. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am. J. Sports Med. 39:1714–1722, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Myers, C. A., M. R. Torry, K. B. Shelburne, J. E. Giphart, R. F. LaPrade, S. L. Woo, and J. R. Steadman. In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am. J. Sports Med. 40:170–178, 2012.

    Article  PubMed  Google Scholar 

  24. Navacchia, A., C. A. Myers, P. J. Rullkoetter, and K. B. Shelburne. Prediction of in vivo knee joint loads using a global probabilistic analysis. J. Biomech. Eng. 138:031002, 2016.

    Article  Google Scholar 

  25. Nemeth, G., and H. Ohlsen. Moment arm lengths of trunk muscles to the lumbosacral joint obtained in vivo with computed tomography. Spine (Phila Pa 1976) 11:158–160, 1986.

    Article  CAS  Google Scholar 

  26. Pal, S., J. E. Langenderfer, J. Q. Stowe, P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann. Biomed. Eng. 35:1632–1642, 2007.

    Article  PubMed  Google Scholar 

  27. Pandy, M. G. Moment arm of a muscle force. Exerc. Sport Sci. Rev. 27:79–118, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. Rajagopal, A., C. Dembia, M. DeMers, D. Delp, J. Hicks, and S. Delp. Full body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 2016. doi:10.1109/TBME.2016.2586891.

    PubMed  Google Scholar 

  29. Sancisi, N., and V. Parenti-Castelli. A 1-dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45:658–665, 2010.

    Article  Google Scholar 

  30. Sherman, M. A., A. Seth, and S. L. Delp. What is a moment arm? Calculating muscle effectiveness in biomechanical models using generalized coordinates. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Paper No. V07BT10A052, 2013.

  31. Smoger, L. M., C. K. Fitzpatrick, C. W. Clary, A. J. Cyr, L. P. Maletsky, P. J. Rullkoetter, and P. J. Laz. Statistical modeling to characterize relationships between knee anatomy and kinematics. J. Orthop. Res. 33:1620–1630, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spoor, C. W., and J. L. van Leeuwen. Knee muscle moment arms from MRI and from tendon travel. J. Biomech. 25:201–206, 1992.

    Article  CAS  PubMed  Google Scholar 

  33. Spoor, C. W., and F. E. Veldpaus. Rigid body motion calculated from spatial co-ordinates of markers. J. Biomech. 13:391–393, 1980.

    Article  CAS  PubMed  Google Scholar 

  34. Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125:70–77, 2003.

    Article  PubMed  Google Scholar 

  35. Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965–974, 1988.

    Article  CAS  PubMed  Google Scholar 

  36. White, S. C., H. J. Yack, and D. A. Winter. A three-dimensional musculoskeletal model for gait analysis. Anatomical variability estimates. J. Biomech. 22:885–893, 1989.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, D. L., Q. Zhu, J. L. Duerk, J. M. Mansour, K. Kilgore, and P. E. Crago. Estimation of tendon moment arms from three-dimensional magnetic resonance images. Ann. Biomed. Eng. 27:247–256, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, G., and P. R. Cavanagh. ISB recommendations for standardization in the reporting of kinematic data. J. Biomech. 28:1257–1261, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi, G. T., and F. E. Zajac. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22:1–10, 1989.

    Article  CAS  PubMed  Google Scholar 

  40. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There are no conflicts of interest to report in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Navacchia.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navacchia, A., Kefala, V. & Shelburne, K.B. Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee. Ann Biomed Eng 45, 789–798 (2017). https://doi.org/10.1007/s10439-016-1728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1728-x

Keywords

Navigation