Skip to main content

Advertisement

Log in

Microflotronic Arterial Tonometry for Continuous Wearable Non-Invasive Hemodynamic Monitoring

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Personalized mobile medicine will continue to advance through the development of wearable sensors that can wirelessly provide pertinent health information while remaining unobtrusive, comfortable, low cost, and easy to operate and interpret. It is the intention that the sensor presented hereafter can contribute to such innovation. By applying a combination of emerging microfluidic and electronic technologies, a miniature, flexible, transparent, highly sensitive and wearable pressure sensor with microfluidic elements has been implemented, referred to as a microflotronic device. High sensitivity of 0.1 kPa−1 and fast response time on the order of tens of milliseconds has been achieved on the microflotronic sensor design. Its sensitivity is among the highest in impedance-based flexible pressure sensors. Once configured into an array, the transparent device can be easily aligned over the target artery to measure blood pressure noninvasively and continuously. In addition, the ultraflexible and thin plastic construct of the microflotronic sensor (of 270 µm in height) can be worn comfortably for extended periods of time. Importantly, the proposed microflotronic sensor has been utilized to perform arterial tonometry with the capability of noninvasive monitoring of arterial blood pressure waveforms in a real-time and continuous fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bergmann, J. H. M., and A. H. McGregor. Body-worn sensor design: what do patients and clinicians want? Ann. Biomed. Eng. 39:2299–2312, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Bhowmik, A. K., Z. Li, and P. J. Bos. Mobile Displays: Technology and Applications. Chichester: Wiley, 2008.

    Book  Google Scholar 

  3. World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2012. http://www.who.int/mediacentre/factsheets/fs317/en/.

  4. Chew, M. S., and A. Åneman. Hemodynamic monitoring using arterial waveform analysis. Curr. Opin. Crit. Care. 19:234–241, 2013.

    Article  PubMed  Google Scholar 

  5. Currie, K. D., M. Hubli, and A. V. Krassioukov. Applanation tonometry: a reliable technique to assess aortic pulse wave velocity in spinal cord injury. Spinal Cord 52(4):272–275, 2014.

    Article  PubMed  CAS  Google Scholar 

  6. Di Giovanni, M. Flat and Corrugated Diaphram Design Handbook. New York: Marcel Dekker Inc, 1982.

    Google Scholar 

  7. Ding, Y., S. Garland, M. Howland, A. Revzin, and T. Pan. Universal nanopatternable interfacial bonding. Adv Mater. 23(46):5551–5556, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Fraile, J. A., B. Javier, J. M. Corchado, and A. Abraham. Applying wearable solutions in dependent environments. IEEE Trans. Inf. Technol. Biomed. 14(6):1459–1467, 2010.

    Article  PubMed  Google Scholar 

  9. Hu, C. S., Y. F. Chung, C. C. Yeh, and C. H. Luo. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array. Evid. Based Complement. Alternat. Med. 745127:1–9, 2012.

    Google Scholar 

  10. Keir, P. J., and R. P. Wells. Changes in geometry of the finger flexor tendons in the carpal tunnel with wrist posture and tendon load: an MRI study on normal wrists. Clin Biomech. 14:635–645, 1999.

    Article  CAS  Google Scholar 

  11. Li, R., B, Nie, P. Digiglio and T. Pan. Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Adv. Funct. Mater., submitted, 2014.

  12. Lin, H. K., S. M. Chiu, T. P. Cho, and J. C. Huang. Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer. Mater. Lett. 113:182–185, 2013.

    Article  CAS  Google Scholar 

  13. Lin, W. H., H. Zhang, and Y. T. Zhang. Investigation on cardiovascular risk prediction using physiological parameters. Comput. Math. Methods Med. 2013:272691, 2013.

    PubMed  PubMed Central  Google Scholar 

  14. Lueder, E. Liquid Crystal Displays (2nd ed.). United Kindom: A John Wiley and Sons, 2010.

    Book  Google Scholar 

  15. Mark, J. B. Atlas of Cardiovascular Monitoring. New York: Churchill Livingstone, 1998.

    Google Scholar 

  16. Mateu Campos, M. L., A. Ferrándiz Sellés, G. Gruartmoner de Vera, J. Mesquida Febrer, C. Sabatier Cloarec, Y. Poveda Hernández, and X. García Nogales. Techniques available for hemodynamic monitoring. advantages and limitations. Med. Intensiva 36(6):434–444, 2012.

    Article  PubMed  CAS  Google Scholar 

  17. Mceleavy, O. D., R. W. Mccallum, J. R. Petrie, M. Small, J. M. C. Connell, N. Sattar, and S. J. Cleland. Higher carotid-radial pulse wave velocity in healthy offspring of patients with type 2 diabetes.”. Diabet. Med. 21(3):262–266, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell, G. F., S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, J. A. Vita, D. Levy, and E. J. Benjamin. Arterial stiffness and cardiovascular events: the framingham heart study. Circulation. 121(4):505–511, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Munir, S., A. Guilcher, T. Kamalesh, B. Clapp, S. Redwood, M. Marber, and P. Chowienczyk. Peripheral augmentation index defines the relationship between central and peripheral pulse pressure. Hypertension. 51(1):112–118, 2007.

    Article  PubMed  Google Scholar 

  20. Naghavi, M., P. Libby, E. Falk, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108(15):1772–1778, 2003.

    Article  PubMed  Google Scholar 

  21. Nie, B., R. Li, J. Brandt, and T. Pan. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab on a Chip. 14(6):1107–1116, 2014.

    Article  PubMed  CAS  Google Scholar 

  22. Nie, B., S. Xing, J. Brandt, and T. Pan. Droplet-based interfacial capacitive sensing. Lab on a Chip. 12:1110–1118, 2012.

    Article  PubMed  CAS  Google Scholar 

  23. Pan, T., and W. Wei. From cleanroom to desktop: emerging micro-nanofabrication technology for biomedical applications. Ann. Biomed. Eng. 39:600–620, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pan, L., et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5:3002, 2014.

    PubMed  Google Scholar 

  25. Pickering, T. G. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans. Circulation 111(5):697–716, 2005.

    Article  PubMed  Google Scholar 

  26. Pini, R., M. C. Cavallini, V. Palmieri, et al. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population. J. Am. Coll. Cardiol. 51(25):2432–2439, 2008.

    Article  PubMed  Google Scholar 

  27. Polyethylene terephthalate. TOXNET Toxicology Data Network. Bethesda: National Institutes of Health, 2009. http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+7712.

  28. Saugel, B., F. Fassio, A. Hapfelmeier, A. S. Meidert, R. M. Schmid, and W. Huber. The T-Line TL-200 system for continuous non-invasive blood pressure measurement in medical intensive care unit patients. Intensive Care Med. 38(9):1471–1477, 2012.

    Article  PubMed  Google Scholar 

  29. Sesso, H. D., M. J. Stampfer, B. Rosner, C. H. Hennekens, J. M. Gaziano, J. E. Manson, and R. J. Glynn. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension. 36(5):801–807, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Sule, A. A., T. H. Hwang, and T. J. Chin. Very high central aortic systolic pressures in a young hypertensive patient on Telmisartan: is central aortic systolic pressure associated with white coat hypertension? Int. J. Angiol. 19(4):138–140, 2010.

    Article  Google Scholar 

  31. Takei, K., et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10):821–826, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Torrado, J., D. Bia, Y. Zocalo, G. Valls, S. Lluberas, D. Craiem, et al. Reactive hyperemia-related changes in carotid-radial pulse wave velocity as a potential tool to characterize the endothelial dynamics. Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1800–1803, 2009.

  33. Vassent, E., G. Meunier, A. Foggia, and G. Reyne. Simulation of induction of machine operation using a step by step finite-element method coupled with circuits and mechanical equations. IEEE Trans. Magn. 27(62):5232–5234, 1991.

    Article  Google Scholar 

  34. Webster, J. G., and J. W. Clark. Medical Instrumentation: Application and Design. Hoboken, NJ: Wiley, 2010.

    Google Scholar 

  35. Webster, J. G., and J. W. Clark. Blood pressure and sound. In: Medical Instrumentation: Application and Design, edited by J. G. Webster. Hoboken, NJ: Wiley, 2010, pp. 311–312.

    Google Scholar 

  36. Wilkinson, M. B., and M. Outram. Principles of pressure transducers, resonance, damping and frequency response. Anaesthesia Intensive Care Med. 10(2):102–105, 2009.

    Article  Google Scholar 

  37. Yoshioka, N., Y. Fujita, T. Yasukawa, I. Sano, M. Kiso, M. Nakayama, et al. Do radial arterial pressure curves have diagnostic validity for identify severe aortic stenosis? J. Anesth. 24:7–10, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the National Science Foundation (ECCS-0846502 and ECCS-1307831) and the University of California Proof-of-Concept Program (PC-269200) to TP. RL acknowledges the fellowship support from China Scholarship Council (CSC). Authors would also like to thank Yijun Zhang for his assistance on the device illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingrui Pan.

Additional information

Associate Editor Yong Xu oversaw the review of this article.

Philip Digiglio and Ruya Li have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Digiglio, P., Li, R., Wang, W. et al. Microflotronic Arterial Tonometry for Continuous Wearable Non-Invasive Hemodynamic Monitoring. Ann Biomed Eng 42, 2278–2288 (2014). https://doi.org/10.1007/s10439-014-1037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1037-1

Keywords

Navigation