Skip to main content

Advertisement

Log in

Adaptive Filter Based Two-Probe Noise Suppression System for Transient Evoked Otoacoustic Emission Detection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arslan, R. B., O. Ozdamar, and Y. Ülgen. Digital subtraction method for transient evoked otoacoustic emission recording with ipsilateral noise suppression: an application to stimulus artifact reduction. Audiology 40:55–62, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. Bray, P., and D. Kemp. An advanced cochlear echo technique suitable for infant screening. Br. J. Audiol. 21:191–204, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Dalmay, F., M. T. Antonini, P. Marquet, and R. Menier. Acoustic properties of the normal chest. Eur. Respir. J. 8:1761–1769, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Delgado, R. E., Ö. Özdamar, S. Rahman, and C. N. Lopez. Adaptive noise cancellation in a multimicrophone system for distortion product otoacoustic emission acquisition. IEEE Trans. Biomed. Eng. 47:1154–1164, 2000.

    Article  PubMed  CAS  Google Scholar 

  5. Dirckx, J. J. J., K. Daeroers, Th. Somers, F. E. Offeciers, and P. J. Govaerts. Numerical assessment of TOAE screening results: currently used criteria and their effect on TOAE prevalence figures. Acta Otolaryngol. Stockh. 116:672–679, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. Farhang-Boroujeny, B. Adaptive Filters: Theory and Applications. New York: John Wiley & Sons, Inc., 1998.

    Google Scholar 

  7. Fitzgerald, T. S., and B. A. Prieve. COAE thresholds: 1. Effects of equal-amplitude versus subtraction methods. J. Speech Lang. Hear. Res. 40:1164–1176, 1997.

    PubMed  CAS  Google Scholar 

  8. Grandori, F., and P. Ravazzani. Non-linearities of click-evoked otoacoustic emissions and the derived non-linear technique. Br. J. Audiol. 27:97, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Hall, J. W. Handbook of Otoacoustic Emissions. San Diego: Singular Publishing Group, 2000.

    Google Scholar 

  10. Kei, J., R. Sockalingam, C. Holloway, A. Agyik, C. Brinin, and D. Baine. Transient evoked otoacoustic emissions in adults: a comparison between two test protocols. J. Am. Acad. Audiol. 14:563–573, 2003.

    Article  PubMed  Google Scholar 

  11. Kemp, D. T. Otoacoustic emissions, their origin in cochlear function and use. Br. Med. Bull. 63:223–241, 2002.

    Article  PubMed  Google Scholar 

  12. Kemp, D. T., P. Bray, L. Alexander, and A. M. Brown. Acoustic emission cochleography practical aspects. Scand. Audiol. 25:71–94, 1986.

    CAS  Google Scholar 

  13. Killion, M. C. Noise and microphones. J. Acoust. Soc. Am. 59:424–433, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Lasky, R. E. Distortion product otoacoustic emissions in human newborns and adults. I. Frequency effects. J. Acoust. Soc. Am. 103:981–991, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Muller, P., and M. Kompis. Evaluation of a noise reduction system for the assessment of click-evokated otoacoustic emissions. J. Acoust. Soc. Am. 112:164–171, 2002.

    Article  PubMed  Google Scholar 

  16. Neumann, J., S. S. Uppenkamp, and B. Kollmeier. Chirp evoked otoacoustic emissions. Hear. Res. 79:17–25, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Prieve, B. A., M. P. Gorga, A. Schmidt, S. Neely, J. Peters, L. Schultes, and W. Jesteadt. Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-impaired ears. J. Acoust. Soc. Am. 93:3308–3319, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Rasmussen, A. N., P. A. Osterhammel, P. T. Johannesen, and B. Borgkvist. Neonatal hearing screening using otoacoustic emissions elicited by maximum length sequences. Br. J. Audiol. 32:355–366, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Robinette, M. S., and T. J. Glattke. Otoacoustic Emissions: Clinical Applications (2nd ed.). New York: Thieme, 2002.

    Google Scholar 

  20. Therrien, C. W. Overview of statistical signal processing. In: The Digital Signal Processing Handbook, edited by V. K. Madisetti. Boca Raton: CRC Press Taylor & Francis Group, 2010.

    Google Scholar 

  21. Thornton, A. R. D. High rate otoacoustic emissions. J. Acoust. Soc. Am. 94:132–136, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Tognola, G., F. Grandori, and P. Ravazzani. Data processing options and response scoring for OAE-based newborn hearing screening. J. Acoust. Soc. Am. 109:283–290, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, M. E., and M. J. Crocker. On the application of coherence techniques for source identification in a multiple noise source environment. J. Acoust. Soc. Am. 74:861–872, 1983.

    Article  Google Scholar 

  24. Whitehead, M. L., B. B. Stagner, B. L. Lonsbury-Martin, and G. K. Martin. Measurement of otoacoustic emissions for hearing assessment. IEEE Eng Med Biol 13:210–226, 1994.

    Article  Google Scholar 

  25. Widmalm, S. E., D. Djurdjanovic, and D. C. McKay. The dynamic range of TMJ sounds. J. Oral Rehabil. 30:495–500, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Widrow, B., and S. Stearns. Adaptive Signal Processing. Englewood Cliffs, New York: Prentice Hall, 1985.

    Google Scholar 

  27. Zimatore, G., S. Hatzopoulos, A. Giuliani, A. Martini, and A. Colosimo. Comparison of transient otoacoustic emission responses from neonatal and adult ears. J. Appl. Physiol. 92:2521–2528, 2002.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants 178027 and TR32032 from the Ministry of Science and Technological Development of the Republic of Serbia.

Conflict of interest

The authors of the above paper state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miško Subotić.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subotić, M., Šarić, Z. & Jovičić, S.T. Adaptive Filter Based Two-Probe Noise Suppression System for Transient Evoked Otoacoustic Emission Detection. Ann Biomed Eng 40, 637–647 (2012). https://doi.org/10.1007/s10439-011-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0430-2

Keywords

Navigation