Skip to main content

Advertisement

Log in

A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The introduction of drug-eluting stents (DES) has reduced the occurrence of restenosis in coronary arteries. However, restenosis remains a problem in stented coronary bifurcations. This study investigates and compares three different second generation DESs when being implanted in the curved main branch of a coronary bifurcation with the aim of providing better insights into the related changes of the mechanical environment. The 3D bifurcation model is based on patient-specific angiographic data that accurately reproduce the in vivo curvatures of the vessel segments. The layered structure of the arterial wall and its anisotropic mechanical behavior are taken into account by applying a novel algorithm to define the fiber orientations. An innovative simulation strategy considering the insertion of a folded balloon catheter over a guide wire is proposed in order to position the stents within the curved vessel. Straightening occurs after implantation of all stents investigated. The resulting distributions of the wall stresses are strongly dependent on the stent design. Using a parametric modeling approach, two design modifications, which reduce the predicted maximum values of the wall stress, are proposed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Colombo, A., E. Bramucci, S. Saccà, R. Violini, C. Lettieri, R. Zanini, I. Sheiban, L. Paloscia, E. Grube, J. Schofer, L. Bolognese, M. Orlandi, G. Niccoli, A. Latib, and F. Airoldi. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) Study. Circulation 119:71–78, 2009.

    Article  Google Scholar 

  2. De Beule, M. Finite Element Stent Design. PhD thesis, Ghent University, B, 2008.

  3. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008.

    Article  Google Scholar 

  4. Deplano, V., C. Bertolotti, and P. Barragan. Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation. Med. Biol. Eng. Comput. 42:650–659, 2004.

    Article  CAS  Google Scholar 

  5. Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.

    PubMed  Google Scholar 

  6. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E, 1998.

    Google Scholar 

  7. Fluent Inc. Gambit Version 2.3 User’s Guide. Lebanon, New Hampshire, 2006.

  8. Gorman, S. P., D. S. Jones, M. C. Bonner, M. Akay, and P. F. Keane. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo. Biomaterials 18:1379–1383, 1997.

    Article  CAS  Google Scholar 

  9. Gyöngyösi, M., P. Yang, A. Khorsand, and D. Glogar. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J. Am. Coll. Cardiol. 35:1580–1589, 2000.

    Article  Google Scholar 

  10. Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons, 2000.

    Google Scholar 

  11. Holzapfel, G. A., and R. W. Ogden, editors. Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. Wien, New York: Springer-Verlag, 2009.

  12. Holzapfel, G. A., and R. W. Ogden, editors. Mechanics of Biological Tissue. Heidelberg: Springer-Verlag, 2006.

  13. Holzapfel, G. A., and R. W. Ogden. On planar biaxial tests for anisotropic nonlinearly elasitc solids. A continuum mechanical framework. Math. Mech. Solids, 2008. doi:10.1177/1081286507084411.

  14. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–2058, 2005.

    Article  CAS  Google Scholar 

  15. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180, 2005.

    Article  Google Scholar 

  16. Holzapfel, G. A., M. Stadler, and C. A. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.

    Article  Google Scholar 

  17. Holzapfel, G. A., and H. W. Weizsäcker. Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28:377–392, 1998.

    Article  Google Scholar 

  18. Iakovou, I., L. Ge, and A. Colombo. Contemporary stent treatment of coronary bifurcations. J. Am. Coll. Cardiol. 46:1446–1455, 2005.

    Article  PubMed  Google Scholar 

  19. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007.

    Article  Google Scholar 

  20. Kiousis, D. E., S. F. Rubinigg, M. Auer, and G. A. Holzapfel. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J. Biomech. Eng. 131:121002, 2009.

    Article  PubMed  Google Scholar 

  21. Kiousis, D. E., A. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009.

    Article  Google Scholar 

  22. Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. In: Biomedical Simulation, edited by M. Harders and G. Székely. Springer, 2008, pp. 1–8.

  23. Legrand, V., M. Thomas, M. Zelisko, B. De Bruyne, N. Reifart, T. Steigen, D. Hildick-Smith, R. Albiero, O. Darremont, G. Stankovic, M. Pan, J. Flensted Lassen, Y. Louvard, and T. Lefèvre. Percutaneous coronary intervention of bifurcation lesions: state-of-the-art. Insights from the second meeting of the European Bifurcation Club. EuroInternational 3:44–49, 2007.

    Google Scholar 

  24. Liao, R., N. E. Green, S. Y. Chen, J. C. Messenger, A. R. Hansgen, B. M. Groves, and J. D. Carroll. Three-dimensional analysis of in vivo coronary stent–coronary artery interactions. Int. J. Cardiovasc. Imaging. 20:305–313, 2004.

    Article  PubMed  Google Scholar 

  25. McKelvey, A. L., and R. O. Ritchie. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall. Mater. Trans. A 32A:731–743, 2001.

    Google Scholar 

  26. McNeel, R., and Associates. Rhinoceros—NURBS Modeling for Windows, Version 4.0 User’s Guide. Seattle, Washington, 2008.

  27. Mortier, P., M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009.

    Article  Google Scholar 

  28. Mortier, P., M. De Beule, S. G. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130:021018, 2008.

    Article  CAS  Google Scholar 

  29. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Ormiston, J. A., M. W. Webster, P. N. Ruygrok, J. T. Stewart, H. D. White, and D. S. Scott. Stent deformation following simulated side-branch dilatation: a comparison of five stent designs. Catheter. Cardiovasc. Interv. 47:258–264, 1999.

    Article  CAS  Google Scholar 

  31. Petrini, L., F. Migliavacca, F. Auricchio, and G. Dubini. Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37:495–501, 2004.

    Article  Google Scholar 

  32. Philips Medical Systems Nederland B. V., Best, The Netherlands. http://www.healthcare.philips.com.

  33. Poncin, P., and J. Proft. Stent tubing: understanding the desired attributes. In: Proceedings of the Materials and Processes for Medical Devices Conference, Anaheim, USA, 2003.

  34. pyFormex. http://www.pyformex.org.

  35. Rieu, R., P. Barragan, C. Masson, J. Fuseri, V. Garitey, M. Silvestri, P. Roquebert, and J. Sainsous. Radial force of coronary stents: a comparative analysis. Catheter. Cardiovasc. Interv. 46:380–391, 1999.

    Article  CAS  Google Scholar 

  36. Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516, 2000.

    CAS  Google Scholar 

  37. Squire, J. C. Dynamics of Endovascular Stent Expansion. PhD thesis, Massachusetts Institute of Technology, US, 2000.

  38. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech. 33:1287–1295, 2000.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, W., W. Q. Wang, D. Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

First author’s research is supported by a BOF-Grant (01D22606) from Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortier, P., Holzapfel, G.A., De Beule, M. et al. A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents. Ann Biomed Eng 38, 88–99 (2010). https://doi.org/10.1007/s10439-009-9836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9836-5

Keywords

Navigation