Skip to main content

Advertisement

Log in

Vertebral Osteoporosis and Trabecular Bone Quality

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vertebral fractures due to osteoporosis commonly occur under non-traumatic loading conditions. This problem affects more than 1 in 3 women and 1 in 10 men over a lifetime. Measurement of bone mineral density (BMD) has traditionally been used as a method for diagnosis of vertebral osteoporosis. However, this method does not fully account for the influence of changes in the trabecular bone quality, such as micro-architecture, tissue properties and levels of microdamage, on the strength of the vertebra. Studies have shown that deterioration of the vertebral trabecular architecture results in a more anisotropic structure which has a greater susceptibility to fracture. Transverse trabeculae are preferentially thinned and perforated while the remaining vertical trabeculae maintain their thickness. Such a structure is likely to be more susceptible to buckling under normal compression loads and has a decreased ability to withstand unusual or off-axis loads. Changes in tissue material mechanical properties and levels of microdamage due to osteoporosis may also compromise the fracture resistance of vertebral trabecular bone. New diagnostic techniques are required which will account for the influence of these changes in bone quality. This paper reviews the influence of the trabecular architecture, tissue properties and microdamage on fracture risk for vertebral osteoporosis. The morphological characteristics of normal and osteoporotic architectures are compared and their potential influence on the strength of the vertebra is examined. The limitations of current diagnostic methods for osteoporosis are identified and areas for future research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Fig. 7
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Adami S. (2006) Protelos: Nonvertebral and hip antifracture efficacy in postmenopausal osteoporosis. Bone 38:23–27

    Article  PubMed  CAS  Google Scholar 

  2. Adams, M.F., H. H. Bayraktar, P. Papadopoulos, and T. M. Keaveny. Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing, 2004

  3. Ammann P. (2006) Strontium ranelate: A physiological approach for an improved bone quality. Bone 38:15–18

    Article  PubMed  CAS  Google Scholar 

  4. Arthur Moore T. L., Gibson L. J. (2002) Microdamage accumulation in bovine trabecular bone in uniaxial compression. J. Biomech. Eng. 124:63–71

    Article  PubMed  CAS  Google Scholar 

  5. Banse X., Devogelaer J. P., Munting E., Delloye C., Cornu O., Grynpas M. (2001) Inhomogeneity of human vertebral cancellous bone: Systematic density and structure patterns inside the vertebral body. Bone 28:563–571

    Article  PubMed  CAS  Google Scholar 

  6. Bayraktar, H. H., M. F. Adams, P. F. Hoffmann, D. C. Lee, A. Gupta, P. Papadopoulos, and T. M. Keaveny. Micromechanics of the Human Vertebral Body. 50th Annual Meeting of the ORS Poster No: 1129, 2004

  7. Benito M., Gomberg B., Wehrli F. W., Weening R. H., Zemel B., Wright A. C., Song H. K., Cucchiara A., Snyder P. J. (2003) Deterioration of trabecular architecture in hypogonadal men. J. Endocrinol. Metab. 88:1497–1502

    Article  CAS  Google Scholar 

  8. Bentolila V., Boyce T. M., Fyhrie D. P., Drumb R., Skerry T. M., Schaffler M. B. (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–281

    Article  PubMed  CAS  Google Scholar 

  9. Bini F., Marinozzi A., Marinozzi F., Patane F. (2002) Microtensile measurements of single trabeculae stiffness in human femur. J. Biomech. 35:1515–1519

    Article  PubMed  Google Scholar 

  10. Boivin G., Vedi S., Purdie D. W., Compston J. E., Meunier P. J. (2005) Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: A quantitative microradiographic analysis in postmenopausal women. Bone 36:562–567

    Article  PubMed  CAS  Google Scholar 

  11. Boivin G. Y., Chavassieux P. M., Santora A. C., Yates J., Meunier P. J. (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  PubMed  CAS  Google Scholar 

  12. Borah B., Dufresne T. E., Chmielewski P. A., Johnson T. D., Chines A., Manhart M. D. (2004) Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 34:736–746

    Article  PubMed  CAS  Google Scholar 

  13. Bourne B. C., Van der Meulen M. C. H. (2004) Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37:613–621

    Article  PubMed  Google Scholar 

  14. Boutroy S., Bouxsein M. L., Munoz F., Delmas P. D. (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90:6508–6515

    Article  PubMed  CAS  Google Scholar 

  15. Bouxsein M. (2003) Bone quality: Where do we go from here? Osteoporos. Int. 14:118–127

    Article  PubMed  Google Scholar 

  16. Bouxsein M. L., Myers K. S., Shultz K. L., Donahue L. R., Rosen C. J., Beamer W. G. (2005) Ovariectomy-induced bone loss varies among inbred strains of mice. J. Bone Miner. Res. 20:1085–1092

    Article  PubMed  Google Scholar 

  17. Bouxsein M. L., Palermo L., Yeung C., Black D. M. (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: A prospective analysis from the study of osteoporotic fractures. Osteoporos. Int. 13:358–365

    Article  PubMed  CAS  Google Scholar 

  18. Bouxsein M. L., Uchiyama T., Rosen C. J., Shultz K. L., Donahue L. R., Turner C. H., Sen S., Churchill G. A., Muller R., Beamer W. G. (2004) Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. J. Bone Miner. Res. 19:587–599

    Article  PubMed  CAS  Google Scholar 

  19. Burr D. B., Martin R. B., Schaffler M. B., Radin E. L. (1985) Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18:189–200

    Article  PubMed  CAS  Google Scholar 

  20. Camacho D. L. A., Hopper R. H., Lin G. M., Myers B. S. (1997) An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. J. Biomech. 30:1067–1070

    Article  PubMed  CAS  Google Scholar 

  21. Ciarelli T. E. (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J. Bone Miner. Res. 15: 32–40

    Article  PubMed  CAS  Google Scholar 

  22. Ciarelli T. E., Fyhrie D. P., Parfitt A. M. (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  PubMed  CAS  Google Scholar 

  23. Cody D. D., Goldstein S. A., Flynn M. J., Brown E. B. (1991) Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load. Spine 16:146–154

    PubMed  CAS  Google Scholar 

  24. Compston, J. E. Alimentary Pharmacology Therapeutics. Blackwell Science Ltd., pp. 237–250, 1995

  25. Cornelissen. (1986) Assessment of tibial stiffness by vibration testing in situ – influence of soft tissues, joints and fibula. J. Biomech. 19:551–561

    Article  PubMed  CAS  Google Scholar 

  26. Cosman F., Nieves J., Zion M., Woelfert L., Luckey M., Lindsay R. (2005) Daily and cyclic parathyroid hormone in women receiving alendronate. N. Engl. J. Med. 353:566–575

    Article  PubMed  CAS  Google Scholar 

  27. Crawford, R. P., J. E. M. Brouwers, and T. M. Keaveny. Accurate prediction of vertebral strength using voxel-based non-linear finite element models. 50th Annual Meeting of the ORS Poster No: 1123, 2004

  28. Currey J. D. (1996) Effects of differences in mineralization of the mechanical properties of bone. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304(1121):509–518

    Article  Google Scholar 

  29. Currey J. D., Brear K., Zioupos P. (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29:257–260

    Article  PubMed  CAS  Google Scholar 

  30. David V., Laroche N., Boudignon B., Lafage-Proust M. H., Alexandre C., Ruegsegger P., Vico L. (2003) Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J. Bone Miner. Res. 18:1622–1631

    Article  PubMed  Google Scholar 

  31. Day J. S., Ding M., Bednarz P., van der Linden J. C., Mashiba T., Hirano T., Johnston C. C., Burr D. B., Hvid I., Sumner D. R., Weinans H. (2004) Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties. J. Orthop. Res. 22:465–471

    Article  PubMed  CAS  Google Scholar 

  32. Dempster D. W., Cosman F., Kurland E. S., Zhou H., Nieves J., Woelfert L., Shane E., Plavetic K., Muller R., Bilezikian J., Lindsay R. (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 16:1846–1853

    Article  PubMed  CAS  Google Scholar 

  33. Ding M., Odgaard A., Linde F., Hvid I. (2002) Age-related variations in the microstructure of human tibial cancellous bone. J. Orthop. Res. 20:615–621

    Article  PubMed  Google Scholar 

  34. Doherty W. P., Bovill E. G., Wilson E. L. (1974) Evaluation of the use of resonant frequencies to characterize physical properties of human long bones. J. Biomech. 7:559–561

    Article  Google Scholar 

  35. Dufresne T. E., Chmielewski P. A., Manhart M. D., Johnson T. D., Borah B. (2003) Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif. Tissue Int. 73:423–432

    Article  PubMed  CAS  Google Scholar 

  36. El Haj A. J., Pead M. J., Skerry T. M., Suswillo R., Minter S. L., Rawlinson S. C. F., Ali N. N., Lanyon L. E. (1988) Early cellular responses in load-related adaptive bone remodeling. Bone 9:255

    Article  Google Scholar 

  37. Eriksen E. F., Melsen F., Sod E., Barton I., Chines A. (2002) Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone 31:620–625

    Article  PubMed  CAS  Google Scholar 

  38. Fazzalari N. L., Kuliwaba J. S., Forwood M. R. (2002) Cancellous bone microdamage in the proximal femur: Influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31:697–702

    Article  PubMed  CAS  Google Scholar 

  39. Ferguson S. J., Steffen T. (2003) Biomechanics of the aging spine. Eur. Spine J. 12:97–103

    Article  Google Scholar 

  40. Frost H. (1999) On the trabecular “thickness” – number problem. J. Bone Miner. Res. 14:1816–1821

    Article  PubMed  CAS  Google Scholar 

  41. Frost H. M. (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law the remodeling problem. Anat. Rec. 226:414–422

    Article  PubMed  CAS  Google Scholar 

  42. Fyhrie D. P., Lang S. M., Hoshaw S. J., Schaffler M. B., Kuo R. F. (1995) Human vertebral cancellous bone surface distribution. Bone 17:287–291

    Article  PubMed  CAS  Google Scholar 

  43. Fyhrie D. P., Schaffler M. B. (1994) Failure mechanisms in human vertebral cancellous bone. Bone 15:105–109

    Article  PubMed  CAS  Google Scholar 

  44. Gasser J. A., Ingold P., Grosios K., Laib A., Hammerle S., Koller B. (2005) Noninvasive monitoring of changes in structural cancellous bone parameters with a novel prototype micro-CT. J. Bone Miner. Metab. 23:6

    Article  Google Scholar 

  45. Goldstein S. A. (1987) The mechanical properties of trabecular bone: Dependence on anatomic location and function. J. Biomech. 20:1055–1061

    Article  PubMed  CAS  Google Scholar 

  46. Goulet R. W., Goldstein S. A., Ciarelli M. J., Kuhn J. L., Brown M. B., Feldkamp L. A. (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–377

    Article  PubMed  CAS  Google Scholar 

  47. Gunaratne, G. H. Estimating the strength of bone using linear response. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66:061904, 2002

    Google Scholar 

  48. Gunaratne, G. H., C. S. Rajapakse, K. E. Bassler, K. K. Mohanty, and S. J. Wimalawansa. Model for bone strength and osteoporotic fractures. Phys. Rev. Lett. 88:068101, 2002

    Google Scholar 

  49. Guo X. E., Kim C. H. (2002) Mechanical consequence of trabecular bone loss and its treatment: A three-dimensional model simulation. Bone 30:404–411

    Article  PubMed  CAS  Google Scholar 

  50. Frost H. M. (1987) Bone “mass” and the “mechanostat”: A proposal. Anat. Rec. 219:1–9

    Article  PubMed  CAS  Google Scholar 

  51. Haddock S. M., Yeh O. C., Mummaneni P. V., Rosenberg W. S., Keaveny T. M. (2004) Similarity in the fatigue behavior of trabecular bone across site and species. J. Biomech. 37:181–187

    Article  PubMed  Google Scholar 

  52. Harrison, N., D. O’ Mahoney, and P. E. McHugh. To assess a high resolution voxel finite element modelling system of trabecular bone. 14th Annual Symposium on Computational Methods in Orthopaedic Biomechanics Chicago, USA. 2006

  53. Health U.D.O. The state of the art in the management of osteoporosis. Clinician 22 2004

  54. Hernandez C. J. (2000) A model of mechanobiologic and metabolic influences on bone adaptation. J. Rehabil. Res. Dev. 37:235–244

    PubMed  CAS  Google Scholar 

  55. Hernandez, C. J., and T. M. Keaveny.(2006) A biomechanical perspective on bone quality. Bone39:1173–1181

    Article  PubMed  CAS  Google Scholar 

  56. Hildebrand T., Laib A., Muller R., Dequeker J., Ruegsegger P. (1999) Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  57. Hirano T., Turner C. H., Forwood M. R., Johnston C. C., Burr D. B. (2000) Does suppression of bone turnover impair mechanical properties by allowing microdamage accumulation?. Bone 27:13–20

    Article  PubMed  CAS  Google Scholar 

  58. Hodgskinson R., Currey J. D., Evans G. P. (1989) Hardness, an indicator of the mechanical competence of cancellous bone. J. Orthop. Res. 7:754–758

    Article  PubMed  CAS  Google Scholar 

  59. Homminga J., Huiskes R., Van Rietbergen B., Ruegsegger P., Weinans H. (2001) Introduction and evaluation of a gray-value voxel conversion technique. J. Biomech. 34:513–517

    Article  PubMed  CAS  Google Scholar 

  60. Homminga J., McCreadie B. R., Ciarelli T. E., Weinans H., Goldstein S. A., Huiskes R. (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759–764

    Article  PubMed  CAS  Google Scholar 

  61. Homminga J., McCreadie B. R., Weinans H., Huiskes R. (2003) The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 36:1461–1467

    Article  PubMed  Google Scholar 

  62. Homminga J., van Rietbergen B., Lochmuller E. M., Weinans H., Eckstein F., Huiskes R. (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent ‘‘error’’ loads. Bone 34:510–516

    Article  PubMed  CAS  Google Scholar 

  63. Hou F. J., Lang S. M., Hoshaw S. J., Reimann D. A., Fyhrie D. P. (1998) Human vertebral body apparent and hard tissue stiffness. J. Biomech. 31:1009–1015

    Article  PubMed  CAS  Google Scholar 

  64. Huiskes R. (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Article  PubMed  CAS  Google Scholar 

  65. Jaasma M. J., Bayraktar H. H., Niebur G. L., Keaveny T. M. (2002) Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J. Biomech. 35:237–246

    Article  PubMed  Google Scholar 

  66. Jacobs C. R., Davis B. R., Rieger C. J., Francis J. J., Saad M., Fyhrie D. P. (1999) The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J. Biomech. 32:1159–1164

    Article  PubMed  CAS  Google Scholar 

  67. Jayasinghe J. A. P., Jones S. J., Boyde A. (1994) Three-dimensional photographic study of cancellous bone in human fourth lumbar vertebral bodies. Anat. Embryol. (Berl). 189:259–274

    CAS  Google Scholar 

  68. Jurist J. M. (1970) In vivo determination of the elastic response of bone. I. Method of ulnar resonant frequency determination. Phys. Med. Biol. 15:417–426

    Article  PubMed  CAS  Google Scholar 

  69. Kabel J., van Rietbergen B., Dalstra M., Odgaard A., Huiskes R. (1999) The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32:673–680

    Article  PubMed  CAS  Google Scholar 

  70. Kabel J., van Rietbergen B., Odgaard A., Huiskes R. (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:481–486

    Article  PubMed  CAS  Google Scholar 

  71. Keaveny, T. M. Systematic and random errors in compression testing of trabecular bone. J. Orthop. Res. 15:101–110, 1997

    Google Scholar 

  72. Keaveny T. M., Wachtel E. F., Guo X. E., Hayes W. C. (1994) Mechanical behavior of damaged trabecular bone. J. Biomech. 27:1309–1318

    Article  PubMed  CAS  Google Scholar 

  73. Keller T. S., Hansson T. H., Abram A. C., Spengler D. M., Panjabi M. M. (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 14:1012–1019

    Article  PubMed  CAS  Google Scholar 

  74. Khosla S., Riggs B. L., Atkinson E. J., Oberg A. L., McDaniel L. J., Holets M., Peterson J. M., Melton L. III (2006) Effects of sex and age on bone microstructure at the ultradistal radius: A population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21:124–131

    Article  PubMed  Google Scholar 

  75. Krassas G. E., Papadopoulou P. (2001) Oestrogen action on bone cells. J. Musculoskelet. Neuronal Interact. 2:143–151

    PubMed  CAS  Google Scholar 

  76. Ladd A. J. C., Kinney J. H. (1998) Numerical errors and uncertainties in finite-element modeling of trabecular bone. J. Biomech. 31:941–945

    Article  PubMed  CAS  Google Scholar 

  77. Lanyon L.E. (1992) The success and failure of the adaptive response to functional load-bearing in averting bone fracture. Bone 13:S17–S21

    Article  PubMed  Google Scholar 

  78. Liebschner M. A. K., Muller R., Wimalawansa S. J., Rajapakse C. S., Gunaratne G. H. (2005) Testing two predictions for fracture load using computer models of trabecular bone. Biophys. J. 89:759–767

    Article  PubMed  CAS  Google Scholar 

  79. Marie P. J. (2006) Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone 38:10–14

    Article  CAS  Google Scholar 

  80. Martin R. B. (2002) Is all cortical bone remodeling initiated by microdamage?. Bone 30:8–13

    Article  PubMed  CAS  Google Scholar 

  81. Mashiba T., Turner C. H., Hirano T., Forwood M. R., Jacob D. S., Johnston C. C., Burr D. B. (2001) Effects of high-dose etidronate treatment on microdamage accumulation and biomechanical properties in beagle bone before occurrence of spontaneous fractures. Bone 29:271–278

    Article  PubMed  CAS  Google Scholar 

  82. Mc Namara L., Prendergast P. J. (2005) Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: A computational analysis. Eur. J. Morphol. 42(1/2):99–109

    Article  Google Scholar 

  83. McNamara L. M., Ederveen A. G. H., Lyons C. G., Price C., Schaffler M. B., Weinans H., Prendergast P. J. (2006) Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400

    Article  CAS  Google Scholar 

  84. McNamara L. M., Van der Linden J. C., Weinans H., Prendergast P. J. (2006) Stress-concentrating effect of resorption lacunae in trabecular bone. J. Biomech. 39:734–741

    Article  CAS  Google Scholar 

  85. Melton L. J., Chrischilles E. A., Cooper C. (1992) Perspective. How many women have osteoporosis?. J. Bone Miner. Res. 7:1005–1010

    Article  PubMed  Google Scholar 

  86. Meunier P. J., Roux C., Seeman E., Ortolani S., Badurski J. E., Spector T. D., Cannata J., Balogh A., Lemmel E.- M., Pors-Nielsen S., Rizzoli R., Genant H. K., Reginster J.-Y. (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med. 350:459–468

    Article  PubMed  CAS  Google Scholar 

  87. Mittra E., Rubin C., Qin Y.-X. (2005) Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J. Biomech. 38:1229–1237

    Article  PubMed  Google Scholar 

  88. Morgan E. F., Bayraktar H. H., Keaveny T. M. (2003) Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 36:897–904

    Article  PubMed  Google Scholar 

  89. Morgan E. F., Bayraktar H. H., Yeh O. C., Majumdar S., Burghardt A., Keaveny T. M. (2004) Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J. Biomech. 37:1413–1420

    Article  PubMed  Google Scholar 

  90. Morgan E. F., Keaveny T. M. (2001) Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34:569–577

    Article  PubMed  CAS  Google Scholar 

  91. Mori S., Harruff R., Ambrosius W., Burr D. B. (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  PubMed  CAS  Google Scholar 

  92. Mosekilde L. (1988) Age related changes in vertebral trabecular bone architecture assessed by a new method. Bone 9:247–250

    Article  PubMed  CAS  Google Scholar 

  93. Mosekilde L. (2000) Age-related changes in bone mass, structure and strength – effects of loading. Zeitsch Rheumatol 59:I1–I9

    Article  Google Scholar 

  94. Mosekilde L. (1990) Consequences of the remodelling process for vertebral trabecular bone structure: A scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10:13–35

    Article  PubMed  CAS  Google Scholar 

  95. Mosekilde L. (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure – biomechanical consequences. Bone 10:425–432

    Article  PubMed  CAS  Google Scholar 

  96. Mosekilde L., Ebbesen E. N., Tornvig L., Thomsen J. S. (2000) Trabecular bone structure and strength – remodelling and repair. J. Musculoskelet. Neuronal Interact. 1:25–30

    PubMed  CAS  Google Scholar 

  97. Moyad M. A. (2003) Osteoporosis: A rapid review of risk factors and screening methods. Urol Oncol 21:375–379

    PubMed  Google Scholar 

  98. Mullender M., van Rietbergen B., Ruegsegger P., Huiskes R. (1998) Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture. Bone 22:125–131

    Article  PubMed  CAS  Google Scholar 

  99. Muller R., Gerber S. C., Hayes W. C. (1998) Micro-compression: A novel technique for the nondestructive assessment of local bone failure. Technol. Health Care 6:433–444

    PubMed  CAS  Google Scholar 

  100. Muller R., Hahn M., Vogel M., Delling G., Ruegsegger P. (1996) Morphometric analysis of noninvasively assessed bone biopsies: Comparison of high-resolution computed tomography and histologic sections. Bone 18:215–220

    Article  PubMed  CAS  Google Scholar 

  101. Muller R., Hildebrand T., Ruegsegger P. (1994) Non-invasive bone biopsy: A new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39:145–164

    Article  PubMed  CAS  Google Scholar 

  102. Muller R., Ruegsegger P. (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J. Biomech. 29:1053–1060

    Article  PubMed  CAS  Google Scholar 

  103. Muller R., Ruegsegger P. (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med. Eng. Phys. 17:126–133

    Article  PubMed  CAS  Google Scholar 

  104. Muller R., Van Campenhout H., Van Damme B., Van der Perre G., Dequeker J., Hildebrand T., Ruegsegger P. (1998) Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  PubMed  CAS  Google Scholar 

  105. Nagaraja S., Couse T. L., Guldberg R. E. (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J. Biomech. 38:707–716

    Article  PubMed  Google Scholar 

  106. Neer R. M., Arnaud C. D., Zanchetta J. R., Prince R., Gaich G. A., Reginster J.-Y., Hodsman A. B., Eriksen E. F., Ish-Shalom S., Genant H. K., Wang O., Mitlak B. H., Mellstrom D., Oefjord E. S., Marcinowska-Suchowierska E., Salmi J., Mulder H., Halse J., Sawicki A. Z. (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344:1434–1441

    Article  PubMed  CAS  Google Scholar 

  107. Niebur G. L., Feldstein M. J., Yuen J. C., Chen T. J., Keaveny T. M. (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33:1575–1583

    Article  PubMed  CAS  Google Scholar 

  108. Noble B. S. (2003) Bone microdamage and cell apoptosis. Eur. Cells Mater. J. 6:46–56

    CAS  Google Scholar 

  109. Noble B. S., Stevens H., Loveridge N., Reeve J. (1997) Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 20:273–282

    Article  PubMed  CAS  Google Scholar 

  110. O’ Brien F. J., Taylor D., Lee C. (2005) The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. 23:475–480

    Article  Google Scholar 

  111. O’ Brien F. J., Taylor D., Lee T. C. (2003) Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36:973–980

    Article  Google Scholar 

  112. Parfitt A. M. (1984) The cellular basis of bone remodelling. Calcif. Tissue Int. 36:S37–S45

    Article  PubMed  Google Scholar 

  113. Parfitt A. M. (1982) The coupling of bone formation to bone resorption: A critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab. Bone Dis. Relat. Res. 4:1–6

    Article  PubMed  CAS  Google Scholar 

  114. Parfitt A.M. (2002) Misconceptions (2): Turnover is always higher in cancellous than in cortical bone. Bone 30:807–809

    Article  PubMed  CAS  Google Scholar 

  115. Parfitt A. M., Matthews C. H., Villanueva A. R., Kleerekoper M., Frame B., Rao D. S. (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J. Clin. Invest. 72:1396–1409

    Article  PubMed  CAS  Google Scholar 

  116. Prendergast P. (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin. Biomech. 12:343–366

    Article  Google Scholar 

  117. Rho J. Y., Ashman R. B., Turner C. H. (1993) Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J. Biomech. 26:111–119

    Article  PubMed  CAS  Google Scholar 

  118. Rho J.–Y., Tsui T. Y., Pharr G. M. (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  119. Robinson S., Suomalainen A., Kortesniemi M. (2005) μm-CT. Eur. J. Radiol. 56:185–191

    Article  PubMed  Google Scholar 

  120. Ruegsegger P., Koller B., Muller R. (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58:24–29

    Article  PubMed  CAS  Google Scholar 

  121. Ruimerman R., Hilbers P., van Rietbergen B., Huiskes R. (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38:931–941

    Article  PubMed  CAS  Google Scholar 

  122. Schaffler M. (2003) Role of bone turnover in microdamage. Osteoporos. Int. 14:73–80

    Article  PubMed  Google Scholar 

  123. Silva M. J., Gibson L. J. (1997) Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone 21:191–199

    Article  PubMed  CAS  Google Scholar 

  124. Simpson E. K., Parkinson I. H., Manthey B., Fazzalari N.L. (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J. Bone Miner. Res. 16:681–687

    Article  PubMed  CAS  Google Scholar 

  125. Smit T. H., Burger E. H. (2000) Is BMU-coupling a strain regulated phenomenon? A finite element analysis. J. Bone Miner. Res. 15:301–307

    Article  PubMed  CAS  Google Scholar 

  126. Snyder B. D., Piazza S., Edwards W. T., Hayes W. C. (1993) Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif. Tissue Int. 53:S14–S22

    Article  PubMed  Google Scholar 

  127. Song Y., Liebschner M .A .K., Gunaratne G. H. (2004) A study of age-related architectural changes that are most damaging to bones. Biophys. J. 87:3642–3647

    Article  PubMed  CAS  Google Scholar 

  128. Stanford C. M., Brand R. A. (1999) Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J. Prosthet. Dent. 81:553–561

    Article  PubMed  CAS  Google Scholar 

  129. Stauber M., Muller R. (2006) Volumetric spatial decomposition of trabecular bone into rods and plates – A new method for local bone morphometry. Bone 38:475–484

    Article  PubMed  Google Scholar 

  130. Takai, E., M. S. Huang, R. L. Mauck, C. T. Hung, and X. E. Guo. Osteocytes regulate osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. 50th Annual Meeting of the ORS Paper No: 0090, 2004

  131. Thomsen J. S., Ebbesen E. N., Mosekilde L. (2002) Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31:136–142

    Article  PubMed  CAS  Google Scholar 

  132. Thomsen J. S., Ebbesen E. N., Mosekilde L. (2002) Zone-dependent changes in human vertebral trabecular bone: Clinical implications. Bone 30:664–669

    Article  PubMed  Google Scholar 

  133. Thurner P. J., Wyss P., Voide R., Stauber M., Stampanoni M., Sennhauser U., Muller R. (2006) Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone 39:289–299

    Article  PubMed  CAS  Google Scholar 

  134. Tsubota K., Adachi T. (2005) Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med. Eng. Phys. 27:305–311

    Article  PubMed  Google Scholar 

  135. Turner A. W. L. (1997) A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptations ? J. Biomech. 30:555–563

    Article  PubMed  CAS  Google Scholar 

  136. Turner C. H. (2002) Biomechanics of bone: Determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104

    Article  PubMed  CAS  Google Scholar 

  137. Turner C. H., Owan I., Takano Y. (1995) Mechanotransduction in bone: Role of strain rate. Am J. Physiol. Endocrinol. Metab. 269:E438–E442

    CAS  Google Scholar 

  138. Turner C. H., Rho J., Takano Y., Tsui T. Y., Pharr G. M. (1999) The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques. J. Biomech. 32:437–441

    Article  PubMed  CAS  Google Scholar 

  139. Ulrich D., van Rietbergen B., Laib A., Ruegsegger P. (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  140. Ulrich D., van Rietbergen B., Weinans H., Ruegsegger P. (1998) Finite element analysis of trabecular bone structure: A comparison of image-based meshing techniques. J. Biomech. 31:1187–1192

    Article  PubMed  CAS  Google Scholar 

  141. Vaananen H. K., Harkonen P. L. (1996) Estrogen and bone metabolism. Maturitas 23:S65–S69

    Article  PubMed  CAS  Google Scholar 

  142. van der Linden J. C., Day J. S., Verhaar J. A. N., Weinans H. (2004) Altered tissue properties induce changes in cancellous bone architecture in aging and diseases. J. Biomech. 37:367–374

    Article  PubMed  Google Scholar 

  143. van der Meulen M. C. H., Morgan T. G., Yang X., Baldini T. H., Myers E. R., Wright T. M., Bostrom M. P. G. (2006) Cancellous bone adaptation to in vivo loading in a rabbit model. Bone 38:871–877

    Article  PubMed  Google Scholar 

  144. van Rietbergen B., Majumdar S., Newitt D., MacDonald B. (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: Application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin. Biomech. 17:81–88

    Article  Google Scholar 

  145. van Rietbergen B., Weinans H., Huiskes R., Odgaard A. (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28:69–81

    Article  PubMed  Google Scholar 

  146. Vashishth D., Koontz J., Qiu S. J., Lundin-Cannon D., Yeni Y. N., Schaffler M. B., Fyhrie D. P. (2000) In vivo diffuse damage in human vertebral trabecular bone. Bone 26:147–152

    Article  PubMed  CAS  Google Scholar 

  147. Verborgt O., Gibson G. J., Schaffler M. B. (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15:60–67

    Article  PubMed  CAS  Google Scholar 

  148. Vico L., Collet P., Guignandon A., Lafage-Proust M.-H., Thomas T., Rehailia M., Alexandre C. (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  PubMed  CAS  Google Scholar 

  149. Vogel M., Hahn M., Delling G. (1993) Relation between 2- and 3-dimensional architecture of trabecular bone in the human spine. Bone 14:199–203

    Article  PubMed  CAS  Google Scholar 

  150. Waarsing J. H., Day J. S., van der Linden J. C., Ederveen A. G., Spanjers C., De Clerck N., Sasov A., Verhaar J. A. N., Weinans H. (2004) Detecting and tracking local changes in the tibiae of individual rats: A novel method to analyse longitudinal in vivo micro-CT data. Bone 34:163–169

    Article  PubMed  CAS  Google Scholar 

  151. Wachtel E. F., Keaveny T. M. (1997) Dependence of trabecular damage on mechanical strain. J. Orthotrop. Res. 15:781–787

    Article  CAS  Google Scholar 

  152. Wang G., Zhao S., Yu H., Miller C. A., Abbas P. J., Gantz B. J., Lee S. W., Rubinstein J. T. (2005) Design, analysis and simulation for development of the first clinical micro-CT scanner. Acad. Radiol. 12:511–525

    Article  PubMed  Google Scholar 

  153. Wang X., Niebur G. L. (2006) Microdamage propagation in trabecular bone due to changes in loading mode. J. Biomech. 39:781–790

    Article  PubMed  Google Scholar 

  154. Watts N., Magowan S., Brown J., Barton I., Boonen S., Miller P. (2006) Risedronate demonstrates fracture efficacy in postmenopausal women whether there is a BMD gain or loss during treatment. Bone 38:86

    Article  Google Scholar 

  155. Watts N. B., Josse R. G., Hamdy R. C., Hughes R. A., Manhart M. D., Barton I., Calligeros D., Felsenberg D. (2003) Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J. Clin. Endocrinol. Metab. 88:542–549

    Article  PubMed  CAS  Google Scholar 

  156. Webster S. J. Integrated Bone Tissue Physiology: Anatomy and Physiology. Bone Mechanics Handbook. CRC Press, 2001, pp. 1.1–1.68

  157. Weinhold P. S., Roe S. C., Gilbert J. A., Abrams C. F. (1999) Assessment of the directional elastic moduli of ewe vertebral cancellous bone by vibrational testing. Ann. Biomed. Eng. 27:103–110

    Article  PubMed  CAS  Google Scholar 

  158. Wenzel T. E., Schaffler M. B., Fyhrie D. P. (1996) In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95

    Article  PubMed  CAS  Google Scholar 

  159. Yeh O. C., Keaveny T. M. (2001) Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 19:1001–1007

    Article  PubMed  CAS  Google Scholar 

  160. Yeni Y. N., Fyhrie D. P. (2001) Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions. J. Biomech. 34:1649–1654

    Article  PubMed  CAS  Google Scholar 

  161. Young, B., and J. W. Heath. Skeletal Tissues. Wheater’s Functional Histology, 4th ed. 2000

  162. Zerwekh J. E., Ruml L. A., Gottschalk F., Pak C. Y. C. (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Miner. Res. 13:1594–1601

    Article  PubMed  CAS  Google Scholar 

  163. Zysset P. K., Edward Guo X., Edward Hoffler C., Moore K. E., Goldstein S. A. (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32:1005–1012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Programme for Research in Third Level Institutions (PRTLI), administered by the Higher Education Authority in Ireland. The authors thank the Trinity Centre for Bioengineering for the use of μCT scanner to produce the data for the image shown in Fig. 12. The authors would also like to acknowledge Dr. Laoise Mc Namara for useful discussions on bone remodelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mc Donnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mc Donnell, P., Mc Hugh, P.E. & O’ Mahoney, D. Vertebral Osteoporosis and Trabecular Bone Quality. Ann Biomed Eng 35, 170–189 (2007). https://doi.org/10.1007/s10439-006-9239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9239-9

Keywords

Navigation