Skip to main content
Log in

Ultra-low-cost ‘paper-and-pencil’ device for electrically controlled micromixing of analytes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We demonstrate here a frugal, printing-based fabrication methodology for paper channels, in an effort towards developing an inexpensive micromixing device. The proposed fabrication methodology utilizes the normal ink-jet cartridge ink to create the barriers for the paper channels, without involving any additional complex materials or intermediary ink modification steps. We show through experimental observations, and pertinent scaling analysis, that the electrokinetic effects, along with the capillary and viscous forces, play a significant role in enhancing the liquid transport rate through such a paper channel under an applied electrical potential, in comparison with that observed due to natural imbibition. Thereafter, we delineate the modality of active electrical control of mixing of two liquids in such a printed ‘zigzag’ ‘paper-and-pencil’ device, by exploiting the interplay between the electrohydrodynamic flows stemming from the electrokinetic phenomena and the specific channel geometry. The electrokinetically mediated flow of the liquid samples through the ‘zigzag’ paper channel can be judiciously controlled to either appreciably enhance the mixing characteristics or artificially maintain the segregation of the liquid streams by overriding the inherent wicking action-driven mixing within the paper matrix. Hence, the present endeavour will usher in a new generation of paper microfluidic platforms for micromixing, with enhanced production feasibility, controllability, functioning efficiency, and multiplexing capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadian Arash SJ-A (2014) Paper-based digital microfluidics. Microfluid Nanofluid 16:989–995. doi:10.1007/s10404-014-1345-7

    Article  Google Scholar 

  • Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84(22):9729–9737

    Article  Google Scholar 

  • Arun RK, Halder S, Chanda N, Chakraborty S (2014) A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes. Lab Chip 14(10):1661–1664. doi:10.1039/c4lc00029c

    Article  Google Scholar 

  • Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13:769–787. doi:10.1007/s10404-012-0999-2

    Article  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing : a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  Google Scholar 

  • Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605(2):175–184. doi:10.1016/j.aca.2007.10.049

    Article  Google Scholar 

  • Chan CPY, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R (2013) Evidence-based point-of-care diagnostics: current status and emerging technologies. Annu Rev Anal Chem (Palo Alto, CA) 6:191–211. doi:10.1146/annurev-anchem-062012-092641

    Article  Google Scholar 

  • Chen J-K, Yang R-J (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28(6):975–983. doi:10.1002/elps.200600470

    Article  Google Scholar 

  • Chen B, Kwong P, Gupta M (2013) Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices. ACS Appl Mater Interfaces 5:12701–12707

    Article  Google Scholar 

  • Chen C, Lin B-R, Wang H-K, Fan S-T, Hsu M-Y, Cheng C-M (2014) Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16(5):849–856. doi:10.1007/s10404-014-1359-1

    Article  Google Scholar 

  • Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 122(28):4881–4884. doi:10.1002/ange.201001005

    Article  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(6):5821–5826

    Article  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233. doi:10.1016/j.aca.2010.06.019

    Article  Google Scholar 

  • Godino N, Vereshchagina E (2014) Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device. Microfluid Nanofluid 16:895–905. doi:10.1007/s10404-013-1283-9

    Article  Google Scholar 

  • Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329

    Article  Google Scholar 

  • Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515. doi:10.1021/ac2030199

    Article  Google Scholar 

  • Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1(1):116–149

    Google Scholar 

  • Hwang H, Kim S-H, Kim T-H, Park J-K, Cho Y-K (2011) Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11(20):3404–3406. doi:10.1039/c1lc20445a

    Article  Google Scholar 

  • Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84:2900–2907

    Article  Google Scholar 

  • Kim DY, Steckl AJ (2010) Electrowetting on paper for electronic paper display. ACS Appl Mater Interfaces 2(11):3318–3323. doi:10.1021/am100757g

    Article  Google Scholar 

  • Kurra N, Kulkarni GU (2013) Pencil-on-paper: electronic devices. Lab Chip 13(15):2866–2873. doi:10.1039/c3lc50406a

    Article  Google Scholar 

  • Kurra N, Dutta D, Kulkarni GU (2013) Field effect transistors and RC filters from pencil-trace on paper. Phys Chem Chem Phys 15(21):8367–8372. doi:10.1039/c3cp50675d

    Article  Google Scholar 

  • Lafleur L, Stevens D, McKenzie K, Ramachandran S, Spicar-Mihalic P, Singhal M, Lutz B (2012) Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab Chip 12(6):1119–1127. doi:10.1039/c2lc20751f

    Article  Google Scholar 

  • Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid. doi:10.1007/s10404-014-1340-z

    Google Scholar 

  • Li L, Breedveld V, Hess DW (2013) Design and fabrication of superamphiphobic paper surfaces. ACS Appl Mater Interfaces 5:5381–5386

    Article  Google Scholar 

  • Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500. doi:10.1002/elps.200800563

    Article  Google Scholar 

  • Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82:935–941

    Article  Google Scholar 

  • Mace CR, Deraney RN (2013) Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid 16(5):801–809. doi:10.1007/s10404-013-1314-6

    Article  Google Scholar 

  • Mandal P, Dey R, Chakraborty S (2012) Electrokinetics with “paper-and-pencil” devices. Lab Chip 12(20):4026–4028. doi:10.1039/c2lc40681k

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46(8):1318–1320. doi:10.1002/anie.200603817

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM (2008a) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105(50):19606–19611. doi:10.1073/pnas.0810903105

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008b) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150. doi:10.1039/b811135a

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. doi:10.1021/ac9013989

    Article  Google Scholar 

  • Masoodi R, Pillai KM (2010) Darcy’ s law-based model for wicking in paper-like swelling porous media. Am Inst Chem Eng 56:2257–2267. doi:10.1002/aic

    Google Scholar 

  • Matsuura K, Chen K-H, Tsai C-H, Li W, Asano Y, Naruse K, Cheng C-M (2014) Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluid Nanofluid 16(5):857–867. doi:10.1007/s10404-014-1378-y

    Article  Google Scholar 

  • Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169. doi:10.1039/c0lc00237b

    Article  Google Scholar 

  • Nigmatullin R, Lovitt R, Wright C, Linder M, Nakari-Setälä T, Gama M (2004) Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf B Biointerfaces 35(2):125–135. doi:10.1016/j.colsurfb.2004.02.013

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Rattanarat P, Dungchai W, Siangproh W, Chailapakul O, Henry CS (2012) Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal Chim Acta 744:1–7. doi:10.1016/j.aca.2012.07.003

    Article  Google Scholar 

  • Rezk AR, Qi A, Friend JR, Li WH, Yeo LY (2012) Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12(4):773–779. doi:10.1039/c2lc21065g

    Article  Google Scholar 

  • Sousa MP, Mano JF (2013) Superhydrophobic paper in the development of disposable labware and lab-on-paper devices. ACS Appl Mater Interfaces 5:3731–3737

    Article  Google Scholar 

  • Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12(10):1768–1770. doi:10.1039/c2lc40126f

    Article  Google Scholar 

  • Xu C, Cai L, Zhong M, Zheng S (2015) Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv 5:4770–4773

    Article  Google Scholar 

  • Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi:10.1039/c3lc50169h

    Article  Google Scholar 

  • Yoon B, Shin H, Kang E, Cho DW, Shin K, Chung H (2013) Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl Mater Interfaces 5:4527–4535

    Article  Google Scholar 

  • Zhang M, Ge L, Ge S, Yan M, Yu J, Huang J, Liu S (2013) Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron 41(2013):544–550. doi:10.1016/j.bios.2012.09.022

    Article  Google Scholar 

Download references

Acknowledgments

Ranabir Dey and Shantimoy Kar greatly acknowledge Ms. Deepika Malpani and Mr. Prasad Gosavi from Anton Paar for facilitating the measurement of the surface potential of the paper channel by using the Electrokinetic analyser for solid surfaces (Anton Paar GmbH). Shantimoy Kar greatly acknowledges Council of Scientific and Industrial Research (CSIR), India, for his research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Additional information

Ranabir Dey and Shantimoy Kar have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 9310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Kar, S., Joshi, S. et al. Ultra-low-cost ‘paper-and-pencil’ device for electrically controlled micromixing of analytes. Microfluid Nanofluid 19, 375–383 (2015). https://doi.org/10.1007/s10404-015-1567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1567-3

Keywords

Navigation