Skip to main content
Log in

Discrete microfluidics based on aluminum nitride surface acoustic wave devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

To date, most surface acoustic wave (SAW) devices have been made from bulk piezoelectric materials, such as quartz, lithium niobate or lithium tantalite. These bulk materials are brittle, less easily integrated with electronics for control and signal processing, and difficult to realize multiple wave modes or apply complex electrode designs. Using thin film SAWs makes it convenient to integrate microelectronics and multiple sensing or microfluidics techniques into a lab-on-a-chip with low cost and multi-functions on various substrates (silicon, glass or polymer). In the work, aluminum nitride (AlN)-based SAW devices were fabricated and characterized for discrete microfluidic (or droplet based) applications. AlN films with a highly c-axis texture were deposited on silicon substrates using a magnetron sputtering system. The fabricated AlN/Si SAW devices had a Rayleigh wave mode at a frequency of 80.3 MHz (with an electromechanical coupling coefficient k 2 of 0.24 % and phase velocity v p of 5,139 m/s) and a higher-frequency-guided wave mode at 157.3 MHz (with a k 2 value of 0.22 % and v p of 10,067 m/s). Both modes present a large out of band rejection of ~15 dB and were successfully applied for microfluidic manipulation of liquid droplets, including internal streaming, pumping and jetting/nebulization, and their performance differences for microfluidic functions were discussed. A detailed investigation of the influences of droplet size (ranging from 3 to 15 μL) and RF input power (0.25–68 W) on microdroplet behavior has been conducted. Results showed that pumping and jetting velocities were increased with an increase of RF power or a decrease in droplet size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alghane M, Fu YQ, Chen BX, Li Y, Desmulliez MPY, Walton AJ (2011) Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave. J Appl Phys 109:114901

    Article  Google Scholar 

  • Bourquin Y, Reboud J, Wilson R, Cooper JM (2010) Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. Lab Chip 10:1898–1901

    Article  Google Scholar 

  • Bu G, Ciplys D, Shur M, Schowalter LJ (2004) Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl Phys Lett 84:4611–4613

    Article  Google Scholar 

  • Cheng H, Sun Y, Zhang JX, Zhang YB, Yuan S, Hing P (2003) AlN films deposited under various nitrogen concentrations by RF reactive sputtering. J Cryst Growth 24:46–54

  • Chung GS, Phan DT (2010) Finite element modeling of surface acoustic waves in piezoelectric thin films. J Korean Phys Soc 57:446–450

    Article  Google Scholar 

  • Ding XY, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao XL, Shi JJ, Costanzo F, Huang TJ (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649

  • Du XY, Fu YQ, Tan SC, Luo JK et al (2008) ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl Phys Lett 93:094105

    Article  Google Scholar 

  • Du XY, Fu YQ, Tan SC, Luo JK, Flewitt AJ, Lee DS, Maeng S, Kim SH, Choi YJ, Park NM, Park J, Milne WI (2009) Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. J Appl Phys 105:024508

    Article  Google Scholar 

  • Franke T, Abate AR, Weitz DA, Wixforth A (2009) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9:2625–2627

  • Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting. Lab Chip 10:789–794

    Article  Google Scholar 

  • Friend JR, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83:647–704

    Article  Google Scholar 

  • Fu YQ, Luo JK, Du X, Flewitt AJ, Li Y, Walton A, Milne WI (2010a) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuat B 143:606–619

    Article  Google Scholar 

  • Fu YQ, Cherng JS, Luo J, Flewitt AJ, Walton AJ, Desmulliez M, Milne WI, Placido F (2010) Aluminium nitride thin film acoustic wave devices for Microfluidic and biosensing applications. In: Dissanayake DW (ed) Chapter 12, in acoustic waves. Rijeka, Croatia, Sciyo

  • Fu YQ, Li Y, Zhao C, Placido F, Walton AJ (2012a) Surface acoustic wave nebulization on nanocrystalline ZnO film. Appl Phys Lett 101:194101

    Article  Google Scholar 

  • Fu YQ, Garcia-Gancedo L, Pang HF, Porro S, Gu YW, Luo JK, Zu XT, Placido F, Wilson JIB, Flewitt AJ, Milne WI (2012b) Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices. Biomicrofluidics 6:02410

    Article  Google Scholar 

  • Garcia-Gancedo L, Pedros J, Zhao XB, Ashley GM, Flewitt AJ, Milne WI, Ford CJB, Lu JR, Luo JK (2012) Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading. Biosens Bioelectron 38:369–374

    Article  Google Scholar 

  • Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317

    Article  Google Scholar 

  • Heinze H et al (2004) 3.8×3.8 mm2 PCS-CDMA duplex incorporating thin film resonator technology. IEEE Ultrasonics Symposium, pp 1425–1428

  • Hou R, Hutson D, Kirk KJ, Fu YQ (2012) AlN thin film transducers for high temperature non-destructive testing applications. J Appl Phys 111:074510

    Article  Google Scholar 

  • Iriarte GF, Rodríguez JG, Calle F (2010) Synthesis of c-axis oriented AlN thin films on different substrates: a review. Mater Res Bull 45:1039–1045

    Article  Google Scholar 

  • Jin H, Zhou J, Dong SR, Feng B, Luo JK, Wang DM, Milne WI, Yang CY (2012) Deposition of c-axis orientation aluminum nitride films on flexible polymer substrates by reactive direct-current magnetron sputtering. Thin Solid Films 520:4863–4870

    Article  Google Scholar 

  • Jin H, Zhou J, He X, Wang W, Guo H, Dong S, Wang D, Xu Y, Geng J, Luo J, Milne WI (2013) Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications. Sci Rep 3:2140

    Google Scholar 

  • Kim I, Ku D, Ko J, Kim D, Lee K, Jeong J-H, Lee T, Cheong B, Baik YJ, Kim W (2006) Improvement of the thermal and chemical stability of Al doped ZnO films. J Electroceramics 17:241–245

    Article  Google Scholar 

  • Kovacs G, Anhorn M, Engan HE, Visintini G, Ruppel CCW (1990) Improved material constants for LiNbO3 and LiTaO3. Proc IEEE Ultrason Symp 1:435–438

    Article  Google Scholar 

  • Lee SH, Lee HJ, Oh D, Lee SW, Goto H, Buckmaster R, Yasukawa T, Tomokazu M, Soon-Ku H, Hyunchul K, Meoung-Whan C, Takafumi Y (2006) Control of the ZnO nanowires nucleation site using microfluidic channels. J Phys Chem B 110:3856–3859

    Article  Google Scholar 

  • Lee DS, Fu YQ, Maeng S, Du XY, Tan SC, Luo JK et al (2007) Integrated ZnO Surface acoustic wave microfluidic and biosensor system. IEEE international electron devices meeting, 10–12 Dec 2007, pp 851–854

  • Lewis MF (1972) New technique for the suppression of triple-transit signals in surface-acoustic-wave delay lines. Electron Lett 8:553–584

    Article  Google Scholar 

  • Li Y, Fu YQ, Brodie S, Mansuor A, Walton A (2012a) Enhanced microdroplet splitting, concentration, sensing and ejection by integration of electrowetting-on-dielectrics and surface acoustic wave. Biomicrofluidics 6:012812

    Article  Google Scholar 

  • Li Y, Fu YQ, Brodie SD, Alghane M, Walton AJ (2012b) Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology. Biomicrofluidics 6:012812

    Article  Google Scholar 

  • Özgür Ü, Alivov YaI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

  • Pagán VR (2009) Aluminum nitride deposition/characterization and PMEMS/SAW device simulation/fabrication. Master thesis, West Virginia University

  • Pang HF, Fu YQ, Garcia-Gancedo L, Porro S, Luo JK, Placido F, Wilson JIB, Flewitt AJ, Milne WI, Zu XT (2013a) Enhancement of microfluidic efficiency with nanocrystalline diamond interlayer in the ZnO-based surface acoustic wave device. Microfluid Nanofluid 15(3):377–386

    Article  Google Scholar 

  • Pang HF, Garcia-Gancedo L, Fu YQ, Porro S, Gu YW, Luo JK, Zu XT, Placido F, Wilson JIB, Flewitt AJ, Milne WI (2013) Characterization of the surface acoustic wave devices based on ZnO/nanocrystalline diamond structures. Physica Status Solidi (a) 8:1575–1583

  • Reboud J, Bourquin Y, Wilson R, Pall GS, Jiwaji M, Pitt AR, Graham A, Waters AP, Coopera JM (2012) Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. PNAS 109:15162–15167

    Article  Google Scholar 

  • Shi J, Ahmed D, Mao X, Lin S-CS, Lawit A, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:2890–2895

    Article  Google Scholar 

  • Shilton R, Tan MK, Yeo LY, Friend JR (2008) Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J Appl Phys 104:014910

    Article  Google Scholar 

  • Smith WR, Gerard HM, Collins JH, Reeder TM, Shaw HJ (1969) Analysis of interdigital surface wave transducers by use of an equivalent circuit model. IEEE T Micro Theory 17(11):856–864

    Article  Google Scholar 

  • Tan MK, Friend JR, Yeo LY (2007) Microparticle collection and concentration via a miniature surface acoustic wave device. Lab Chip 7:618–625

    Article  Google Scholar 

  • Tan MK, Friend JR, Yeo LY (2009) Interfacial jetting phenomena induced by focused surface vibrations. Phys Rev Lett 103:024501

    Article  Google Scholar 

  • Trolier-Mckinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceramics 12:7–17

    Article  Google Scholar 

  • Vanni L (2006) Aluminum nitride thin films for MEMS resonators: growth and characterization. Doctoral thesis, University of California, Santa Barbara

  • Wilson R, Reboud J, Bourquin Y, Neale SL, Zhang Y, Cooper JM (2011) Lab Chip. Phononic crystal structures for acoustically driven microfluidic manipulations 11:323–328

    Google Scholar 

  • Wingqvist G (2010) AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf Coat Technol 205:1279–1286

    Article  Google Scholar 

  • Wixforth A (2003) Acoustically driven planar microfluidics. Superlattices Microstruct 33:389–396

    Article  Google Scholar 

  • Wixforth A (2006) Acoustically driven programmable microfluidics for biological and chemical applications. JALA 11:399–405

    Google Scholar 

  • Xu T, Wu G, Zhang G, Hao Y (2003) The compatibility of ZnO piezoelectric film with micromachining process. Sens Actuat A 104:61–67

    Article  Google Scholar 

  • Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 33:012002

    Article  Google Scholar 

  • Yeo LY, Friend JR (2013) Surface acoustic wave microfluidics, annual review of fluid mechanics. doi:10.1146/annurev-fluid-010313-141418

  • Zhou J, Xu N, Wang ZL (2006) Dissolving behavior and stability of ZnO in biofluidics: a study on biodegradability of ZnO nanostructures. Adv Mater 18:2432–2435

    Article  Google Scholar 

  • Zhou J, Dong SR, Jin H, Feng B, Wang D (2012) Flexible surface acoustic wave device with AlN film on polymer substrate. J Control Sci Eng 2012:1–5

  • Zhou J, He XL, Wang WB, Zhu Q, Xuan WP, Jin H, Dong SR, Wang DM, Luo JK (2013a) Transparent surface acoustic wave devices on ZnO/glass using Al-Doped ZnO as the electrode. IEEE Electron Device Lett 34:1319–1321

    Article  Google Scholar 

  • Zhou J, He XL, Jin H, Wang WB, Feng B, Dong SR, Wang DM, Zou GY, Luo JK (2013b) Crystalline structure effect on the performance of flexible ZnO/polyimide surface acoustic wave devices. J Appl Phys 114:044502

Download references

Acknowledgments

The authors acknowledge support from the Royal Society-Research Grant (RG090609), the Scottish Sensing Systems Centre (S3C), Carnegie Trust Funding, Royal Academy of Engineering-Research Exchange with China and India, the EPSRC (Engineering and Physical Sciences Research Council) Engineering Instrument Pool for providing the high-speed video system (Photron XLR Express, VISION Research Phantom MIRO 4, infrared video camera ThermaCAM™ SC640), Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, the National Natural Science Foundation of China (No. 61171038, 61204124, 61274037), the Zhejiang Province Natural Science Fund Key Project (No. J20110271), the Fundamental Research Funds for the Central Universities (No. 2014QNA5002), the Zhejiang Provincial Natural Science Foundation of China (No. Z11101168) and the University Research Fund from Xi’an University of Science and Technology. Part of this work was funded by the European Commission through the 7th Framework Programme by the RaptaDiag project, the COST action IC1208 and by the Ministerio de Economía y Competitividad del Gobierno de España through project MAT2010-18933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Fu.

Additional information

J. Zhou and H. F. Pang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Pang, H.F., Garcia-Gancedo, L. et al. Discrete microfluidics based on aluminum nitride surface acoustic wave devices. Microfluid Nanofluid 18, 537–548 (2015). https://doi.org/10.1007/s10404-014-1456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1456-1

Keywords

Navigation