Skip to main content
Log in

Electroosmotic pumps and their applications in microfluidic systems

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electroosmotic pumping is receiving increasing attention in recent years owing to the rapid development in micro total analytical systems. Compared with other micropumps, electroosmotic pumps (EOPs) offer a number of advantages such as creation of constant pulse-free flows and elimination of moving parts. The flow rates and pumping pressures of EOPs matches well with micro analysis systems. The common materials and fabrication technologies make it readily integrateable with lab-on-a-chip devices. This paper reviews the recent progress on EOP fabrications and applications in order to promote the awareness of EOPs to researchers interested in using micro- and nano-fluidic devices. The pros and cons of EOPs are also discussed, which helps these researchers in designing and constructing their micro platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61(1):R45–R48

    Article  Google Scholar 

  • Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N (2006) Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen. J Chromatogr A 1119(1–2):66–79

    Article  Google Scholar 

  • Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6(11):1455–1461

    Article  Google Scholar 

  • Berrouche Y, Avenas Y, Schaeffer C, Wang P, Chang H-C (2008) Optimization of high flow rate nanoporous electroosmotic pump. J Fluids Eng 130(8):081604/1–081604/6

    Article  Google Scholar 

  • Berthelot M (1859) Violet d’aniline. Rep Chim Appl 1:284

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  • Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, vol 2. Plenum Press, New York, pp 826–835

    Google Scholar 

  • Borowsky J, Lu Q, Collins GE (2008a) High pressure electroosmotic based on a packed bed planar microchip. Sens Actuat B Chem 131(1):333–339

    Article  Google Scholar 

  • Borowsky JF, Giordano BC, Lu Q, Terray A, Collins GE (2008b) Electroosmotic flow-based pump for liquid chromatography on a planar microchip. Anal Chem 80(21):8287–8292

    Article  Google Scholar 

  • Brask A, Kutter JP, Bruus H (2005) Long-term stable electroosmotic pump with ion exchange membranes. Lab Chip 5(7):730–738

    Article  Google Scholar 

  • Brown ABD, Smith CG, Rennie AR (2001) Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E 63(1–2):016305/1–016305/8

    Google Scholar 

  • Buie CR, Posner JD, Fabian T, Cha SW, Kim D, Prinz FB, Eaton JK, Santiago JG (2006a) Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. J Power Sources 161(1):191–202

    Article  Google Scholar 

  • Buie CR, Kim D, Litster SE, Santiago JG (2006b) Free convection direct methanol fuel cells powered by electroosmotic pumps. ECS Trans 3(1):1279–1287

    Article  Google Scholar 

  • Byun CK, Wang X, Pu Q, Liu S (2007) Electroosmosis-based nanopipettor. Anal Chem 79(10):3862–3866

    Article  Google Scholar 

  • Cahill BP, Heyderman LJ, Gobrecht J, Stemmer A (2004) Electro-osmotic streaming on application of traveling-wave electric fields. Phys Rev E 70(3–2):036305-1-14

    Google Scholar 

  • Chen CH, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11(6):672–683

    Article  Google Scholar 

  • Chen L, Ma J, Guan Y (2003a) An electroosmotic pump for packed capillary liquid chromatography. Microchem J 75(1):15–21

    Article  Google Scholar 

  • Chen L, Ma J, Tan F, Guan Y (2003b) Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems. Sens Actuat B Chem 88(3):260–265

    Article  Google Scholar 

  • Chen L, Ma J, Guan Y (2004) Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. J Chromatogr A 1028(2):219–226

    Article  Google Scholar 

  • Chen L, Guan Y, Ma J, Luo G, Liu K (2005a) Application of a high-pressure electro-osmotic pump using nanometer silica in capillary liquid chromatography. J Chromatogr A 1064(1):19–24

    Article  Google Scholar 

  • Chen L, Wang H, Ma J, Wang C, Guan Y (2005b) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sens Actuat B Chem 104(1):117–123

    Article  Google Scholar 

  • Chen Z, Wang P, Chang HC (2005c) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanal Chem 382(3):817–824

    Article  Google Scholar 

  • Chen L, Choo J, Yan B (2007) The microfabricated electrokinetic pump: a potential promising drug delivery technique. Export Opin Drug Deliv 4(2):119–129

    Article  Google Scholar 

  • Chen L, Lee S, Choo J, Lee EK (2008a) Continuous dynamic flow micropumps for microfluid manipulation. J Micromech Microeng 18(1):013001/1–013001/22

    Google Scholar 

  • Chen L, Li Q, Lee S, Choo J (2008b) Development of an electroosmotic pump using nanosilica particle packed capillary. IEEE Sens J 8(5):488–494

    Article  Google Scholar 

  • Chen YF, Li MC, Hu YH, Chang WJ, Wang CC (2008c) Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid Nanofluid 5(2):235–244

    Article  Google Scholar 

  • Dasgupta PK, Liu S (1994) Electroosmosis: a reliable fluid propulsion system for flow injection analysis. Anal Chem 66(11):1792–1798

    Article  Google Scholar 

  • Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab Chip 4(4):396–400

    Article  Google Scholar 

  • Edwards JMIV, Hamblin MN, Fuentes HV, Peeni BA, Lee ML, Woolley AT, Hawkins AR (2007) Thin film electro-osmotic pumps for biomicrofluidic applications. Biomicrofluidics 1(1):014101/1–014101/11

    Article  Google Scholar 

  • Fabian T, O’Hayre R, Litster S, Prinz FB, Santiago JG (2006) Water management at the cathode of a planar air-breathing fuel cell with an electroosmotic pump. ECS Trans 3(1):949–960

    Article  Google Scholar 

  • Figeys D, Aebersold R (1998) Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. Anal Chem 70(18):3721–3727

    Article  Google Scholar 

  • Gan W, Yang L, He Y, Zeng R, Cervera ML, de la Guardia M (2000) Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium(VI) in waste-water. Talanta 51(4):667–675

    Article  Google Scholar 

  • Garcia-Sanchez P, Ramos A, Green NG, Morgan H (2006) Experiments on ac electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans Electr Insul 13(3):670–677

    Article  Google Scholar 

  • Griess JP (1879) Ber Deutsch Chem Ges 12:426

    Google Scholar 

  • Guenat OT, Ghiglione D, Morf WE, de Rooij NF (2001) Partial electroosmotic pumping in complex capillary systems. Part 2: Fabrication and application of a micro total analysis system (μTAS) suited for continuous volumetric nanotitrations. Sens Actuat B Chem 72(3):273–282

    Article  Google Scholar 

  • Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Microchip device for performing enzyme assays. Anal Chem 69(17):3407–3412

    Article  Google Scholar 

  • Helmholtz von HLF (1879) Studien uber electrische grenzschichten. Ann Phys 7:337–382

    Google Scholar 

  • Hunter RJ (1980) In: Brockris JO’M, Conway BE, Yeager E (Eds) Comprehensive treatise of electrochemistry, vol 1. Plenum Press, New York, pp 404–412

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174

    Article  Google Scholar 

  • Jiang L, Mikkelsen J, Koo JM, Huber D, Yao S, Zhang L, Zhou P, Maveety JG, Prasher R, Santiago JG, Kenny TW, Goodson KE (2002) Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Comp Pack Manuf Technol 25(3):347–355

    Article  Google Scholar 

  • Jin LJ, Ferrance J, Sanders JC, Landers JP (2003) A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip 3(1):11–18

    Article  Google Scholar 

  • Joo S, Chung TD, Kim HC (2007) A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces. Sens Actuat B Chem 123(2):1161–1168

    Article  Google Scholar 

  • Kim D, Posner JD, Santiago JG (2006) Electroosmotic pumping of methanol/water mixtures for direct methanol fuel cell applications. ECS Trans 1(6):241–245

    Article  MATH  Google Scholar 

  • Kim D, Posner JD, Santiago JG (2008) High flow rate per power electroosmotic pumping using low ion density solvents. Sens Actuat A 141(1):201–212

    Article  Google Scholar 

  • Kutter JP, Jacobson SC, Ramsey JM (1997) Integrated microchip device with electrokinetically controlled solvent mixing for isocratic and gradient elution in micellar electrokinetic chromatography. Anal Chem 69(24):5165–5171

    Article  Google Scholar 

  • Lammerhofer M, Svec F, Frechet JMJ, Lindner W (2001) Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases. J Chromatogr A 925(1–2):265–277

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang HC (2004) Electrokinetic micropump and micromixer design based on ac faradaic polarization. J Appl Phys 96(3):1730–1733

    Article  Google Scholar 

  • Lazar LM, Karger BL (2002) Multiple open-channel electroosmotic pumping system for microfluidic sample handling. Anal Chem 74(24):6259–6268

    Article  Google Scholar 

  • Lazar IM, Trisiripisal P, Sarvaiya HA (2006) Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Anal Chem 78(15):5513–5524

    Article  Google Scholar 

  • Li PCH, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69(8):1564–1568

    Article  Google Scholar 

  • Litster S, Buie CR, Fabian T, Eaton JK, Santiago JG (2007) Active water management for PEM fuel cells. J Electrochem Soc 154(10):B1049–B1058

    Article  Google Scholar 

  • Liu S, Dasgupta PK (1992) Flow injection analysis in the capillary format using electroosmotic pumping. Anal Chim Acta 268(1):1–6

    Article  Google Scholar 

  • Liu S, Dasgupta PK (1993) A simple means to increase absorbance detection sensitivity in capillary zone electrophoresis. Anal Chim Acta 283(2):747–753

    Article  Google Scholar 

  • Liu S, Dasgupta PK (1994) Sequential injection analysis in capillary format with an electroosmotic pump. Talanta 41(11):1903–1910

    Article  Google Scholar 

  • Liu S, Dasgupta PK (1995) Electroosmotically pumped capillary format sequential injection analysis with a membrane sampling interface for gaseous analytes. Anal Chim Acta 308(1–3):281–285

    Article  Google Scholar 

  • Liu S, Pu Q, Lu JJ (2003) Electric field-decoupled electroosmotic pump for microfluidic devices. J Chromatogr A 1013(1–2):57–64

    Article  Google Scholar 

  • Miao J, Xu Z, Zhang X, Wang N, Yang Z, Sheng P (2007) Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv Mater 19(23):4234–4237

    Article  Google Scholar 

  • Morf WE, Guenat OT, de Rooij NF (2001) Partial electroosmotic pumping in complex capillary systems. Part 1: Principles and general theoretical approach. Sens Actuat B Chem 72(3):266–272

    Article  Google Scholar 

  • Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sens Actuat B Chem 92(3):262–268

    Article  Google Scholar 

  • Nie F, Macka M, Barron L, Connolly D, Kent N, Paull B (2007a) Robust monolithic silica-based on-chip electro-osmotic micro-pump. Analyst 132(5):417–424

    Article  Google Scholar 

  • Nie F, Macka M, Paull B (2007b) Micro-flow injection analysis system: on-chip sample preconcentration, injection and delivery using coupled monolithic electroosmotic pumps. Lab Chip 7(11):1597–1599

    Article  Google Scholar 

  • Peters EC, Petro M, Svec F, Frechet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69(17):3646–3649

    Article  Google Scholar 

  • Paul PH, Arnold DW, Rakestraw DJ (1998) Electrokinetic generation of high pressures using porous microstructures. In: Harrison DJ, van den Berg A (eds) Micro total analysis system. Springer, New York, pp 49–52

    Google Scholar 

  • Paul PH, Rakestraw DJ (2000) Electrokinetic high pressure hydraulic system. US Patent 6,019,882

  • Paul PH, Arnold DW, Neyer DW, Smith KB (2000) Electrokinetic pump application in micro-total analysis systems: mechanical actuation to HPLC. In: Harrison DJ, van den Berg A (eds) Micro total analysis system. Springer, New York, pp 583–590

    Google Scholar 

  • Pikal MJ (2001) The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 46(1–3):281–305

    Article  Google Scholar 

  • Prakash P, Grissom MD, Rahn CD, Zydney AL (2006) Development of an electroosmotic pump for high performance actuation. J Membr Sci 286(1+2):153–160

    Article  Google Scholar 

  • Pretorius V, Hopkins BJ, Schieke JD (1974) Electroosmosis. New concept for high speed liquid chromatography. J Chromatogr A 99:23–30

    Article  Google Scholar 

  • Pu Q, Liu S (2004) Microfabricated electroosmotic pump for capillary-based sequential injection analysis. Anal Chim Acta 511(1):105–112

    Article  Google Scholar 

  • Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Colloid Interf Sci 217(2):420–422

    Article  Google Scholar 

  • Ramos A, Gonzalez A, Castellanos A, Green NG, Morgan H (2003) Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 67(5–2):056302/1–056302/11

    Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (2005) Pumping of liquids with traveling-wave electroosmosis. J Appl Phys 97(8):084906/1–084906/8

    Article  Google Scholar 

  • Razunguzwa TT, Timperman AT (2004) Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence. Anal Chem 76(5):1336–1341

    Article  Google Scholar 

  • Reichmuth DS, Kirby BJ (2003) Effects of ammonioalkyl sulfonate internal salts on electrokinetic micropump performance and reversed-phase HPLC separations. J Chromatogr A 1013(1–2):93–101

    Article  Google Scholar 

  • Reuss FF (1809) Sur un nouvel effet de l’électricité galvanique. Mémoires de la Société Impériale des Naturalistes de Moscou 2:327–337

    Google Scholar 

  • Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69(11):4017–4024

    Article  Google Scholar 

  • Ruzicka J, Hansen EH (1981) Flow injection analysis. Wiley, New York

    Google Scholar 

  • Saltzman BE (1954) Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Anal Chem 26:1949–1955

    Article  Google Scholar 

  • Seibel K, Schöler L, Schäfer H, Böhm M (2008) A programmable planar electroosmotic micropump for lab-on-chip application. 18(2):025008/1–025008/7

  • Smoluchowski MV (1917) Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z Phys Chem 92:129–168

    Google Scholar 

  • Studer V, Pepin A, Chen Y, Ajdari A (2004) An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 129(10):944–949

    Article  Google Scholar 

  • Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2001) Low-voltage electroosmosis pump and its application to on-chip linear stepping pneumatic pressure source. Micro total analysis systems, pp 230–232

  • Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24(1–2):185–192

    Article  Google Scholar 

  • Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965(1–2):35–49

    Article  Google Scholar 

  • Tripp JA, Svec F, Frechet JMJ, Zeng SL, Mikkelsen JC, Santiago JG (2004) High-pressure electroosmotic pumps based on porous polymer monoliths. Sens Actuat B Chem 99(1):66–73

    Article  Google Scholar 

  • Urbanski JP, Thorsen T, Levitan JA, Bazant MZ (2006) Fast AC electro-osmotic micropumps with nonplanar electrodes. Appl Phys Lett 89(14):143508/1–143508/3

    Article  Google Scholar 

  • Urbanski JP, Levitan JA, Burch DN, Thorsen T, Bazant MZ (2007) The effect of step height on ac electro-osmotic microfluidic pumps. J Colloid Interf 309(2):332–341

    Article  Google Scholar 

  • Wallner JZ, Nagar N, Friedrich CR, Bergstrom PL (2007) Macro porous silicon as pump media for electro-osmotic pump. Phys Stat Sol (a) 204(5):1327–1331

    Article  Google Scholar 

  • Wang P, Chen ZL, Chang HC (2006) A new electro-osmotic pump based on silica monoliths. Sens Actuat B Chem 113(1):500–509

    Article  MathSciNet  Google Scholar 

  • Wu J (2008) Ac electro-osmotic micropump by asymmetric electrode polarization. J Appl Phys 103(2):024907/1–024907/5

    Google Scholar 

  • Xie C, Hu J, Xiao H, Su X, Dong J, Tian R, He Z, Zou H (2005) Electrochromatographic evaluation of a silica monolith capillary column for separation of basic pharmaceuticals. Electrophoresis 26(4–5):790–797

    Article  Google Scholar 

  • Yang L, He YZ, Gan WE, Li M, Qu QS, Lin XQ (2001) Determination of chromium(VI) and lead(II) in drinking water by electrokinetic flow analysis system and graphite furnace atomic absorption spectrometry. Talanta 55(2):271–279

    Article  Google Scholar 

  • Yao S, Huber D, Mikkelsen JC, Santiago JG (2001) A large flowrate electroosmotic pump with micron pores. In: Proceedings of the international mechanical engineering congress and exposition, sixth microfluids symposium, New York, pp 1–7

  • Yao S, Hertzog DE, Zeng S, Mikkelsen JC, Santiago JG (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interf Sci 268(1):143–153

    Article  Google Scholar 

  • Yao S, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15(3):717–728

    Article  Google Scholar 

  • Zeng S, Chen CH, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuat B Chem 79(2–3):107–114

    Article  Google Scholar 

  • Zeng S, Chen CH, Santiago JG, Chen J, Zare RN, Tripp JA, Svec F, Frechet J (2002) Electroosmotic flow pumps with polymer frits. Sens Actuat B 82(2–3):209–212

    Article  Google Scholar 

  • Zhao YQ, He YZ, Gan WE, Yang L (2002) Determination of nitrite by sequential injection analysis using electrokinetic flow analysis system. Talanta 6(4):619–625

    Article  Google Scholar 

  • Zou HF, Huang XD, Ye ML, Luo QZ (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A 954(1):5–32

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Institute of Health (1R21EB008512-01A1) and National Science Foundation (CHE-0514706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaorong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Cheng, C., Wang, S. et al. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6, 145–162 (2009). https://doi.org/10.1007/s10404-008-0399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0399-9

Keywords

Navigation