Skip to main content

Advertisement

Log in

Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the mechanism of soluble vascular adhesion protein-1 (sVAP-1) accumulation induced by vascular endothelial growth factor (VEGF) in the vitreous of patients with diabetic retinopathy (DR).

Study design

Experimental.

Methods

Protein levels of sVAP-1 and N epsilon-(hexanoyl)lysine (HEL), an oxidative stress marker, in the vitreous samples from patients with proliferative diabetic retinopathy (PDR) with or without intravitreal bevacizumab (IVB) injection were determined by ELISA. The effect of VEGF on both mRNA expression of Vap-1 and secretion of sVAP-1 in rat retinal capillary endothelial cells (TR-iBRB2) was analyzed by real-time PCR and western blotting, respectively. In addition, the impact of VEGF on production and activation ratios of matrix metalloproteinase (MMP)-2 and MMP-9 was examined by gelatin zymography. Hydrogen peroxide production and reactive oxygen species (ROS) levels were assessed in the supernatants of TR-iBRB2 cells treated with VEGF.

Results

IVB injection decreased vitreous levels of sVAP-1 and HEL in patients with PDR. VEGF stimulation released sVAP-1 protein from TR-iBRB2 cells as a consequence of membrane-anchored VAP-1 shedding by MMP-2 and MMP-9. In addition, VEGF increased hydrogen peroxide generation and ROS augmentation through spermine oxidation by sVAP-1 as semicarbazide-sensitive amine oxidase (SSAO) in the supernatant of cultured endothelial cells.

Conclusions

The current data demonstrate that proangiogenic factor VEGF induces sVAP-1 release from retinal capillary endothelial cells and facilitates hydrogen peroxide generation via enzymatic property of sVAP-1, followed by the increase of oxidative stress, one of the crucial factors in the pathogenesis of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2:17.

    Article  Google Scholar 

  2. Nentwich MM, Ulbig MW. Diabetic retinopathy-ocular complications of diabetes mellitus. World J Diabetes. 2015;6:489–99.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118:445–50.

    Article  CAS  PubMed  Google Scholar 

  4. Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology. 2003;110:1690–6.

    Article  PubMed  Google Scholar 

  5. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol. 2002;133:70–7.

    Article  CAS  PubMed  Google Scholar 

  6. Jakobsson E, Nilsson J, Kallstrom U, Ogg D, Kleywegt GJ. Crystallization of a truncated soluble human semicarbazide-sensitive amine oxidase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005;61:274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci. 1999;24:8–11.

    Article  CAS  PubMed  Google Scholar 

  8. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science. 1992;257:1407–9.

    Article  CAS  PubMed  Google Scholar 

  9. Salmi M, Jalkanen S. VAP-1: an adhesin and an enzyme. Trends Immunol. 2001;22:211–6.

    Article  CAS  PubMed  Google Scholar 

  10. Jalkanen S, Salmi M. VAP-1 and CD73, endothelial cell surface enzymes in leukocyte extravasation. Arterioscler Thromb Vasc Biol. 2008;28:18–26.

    Article  CAS  PubMed  Google Scholar 

  11. Noda K, Miyahara S, Nakazawa T, Almulki L, Nakao S, Hisatomi T, et al. Inhibition of vascular adhesion protein-1 suppresses endotoxin-induced uveitis. Faseb J. 2008;22:1094–103.

    Article  CAS  PubMed  Google Scholar 

  12. Noda K, She H, Nakazawa T, Hisatomi T, Nakao S, Almulki L, et al. Vascular adhesion protein-1 blockade suppresses choroidal neovascularization. Faseb J. 2008;22:2928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noda K, Nakao S, Zandi S, Engelstadter V, Mashima Y, Hafezi-Moghadam A. Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes. Exp Eye Res. 2009;89:774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silvola JM, Virtanen H, Siitonen R, Hellberg S, Liljenback H, Metsala O, et al. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep. 2016;6:35089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501–20.

    Article  PubMed  Google Scholar 

  16. Trivedi PJ, Tickle J, Vesterhus MN, Eddowes PJ, Bruns T, Vainio J, et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut. 2017. https://doi.org/10.1136/gutjnl-2016-312354.

    Google Scholar 

  17. Kostoro J, Chang SJ, Clark Lai YC, Wu CC, Chai CY, Kwan AL. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas. APMIS. 2016;124:462–8.

    Article  CAS  PubMed  Google Scholar 

  18. Boomsma F, van den Meiracker AH, Winkel S, Aanstoot HJ, Batstra MR, Man Veld AJ, et al. Circulating semicarbazide-sensitive amine oxidase is raised both in type I (insulin-dependent), in type II (non-insulin-dependent) diabetes mellitus and even in childhood type I diabetes at first clinical diagnosis. Diabetologia. 1999;42:233–7.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshikawa N, Noda K, Shinoda H, Uchida A, Ozawa Y, Tsubota K, et al. Serum vascular adhesion protein-1 correlates with vascular endothelial growth factor in patients with type II diabetes. J Diabetes Complicat. 2013;27:162–6.

    Article  PubMed  Google Scholar 

  20. Murata M, Noda K, Fukuhara J, Kanda A, Kase S, Saito W, et al. Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53:4055–62.

    Article  CAS  PubMed  Google Scholar 

  21. Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, et al. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res. 2001;72:163–72.

    Article  CAS  PubMed  Google Scholar 

  22. Moriya SS, Miura T, Takao K, Sugita Y, Samejima K, Hiramatsu K, et al. Development of irreversible inactivators of spermine oxidase and N1-acetylpolyamine oxidase. Biol Pharm Bull. 2014;37:475–80.

    Article  CAS  PubMed  Google Scholar 

  23. Nicoletti R, Venza I, Ceci G, Visalli M, Teti D, Reibaldi A. Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br J Ophthalmol. 2003;87:1038–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.

    Article  CAS  PubMed  Google Scholar 

  25. Boulton M, Foreman D, Williams G, McLeod D. VEGF localisation in diabetic retinopathy. Br J Ophthalmol. 1998;82:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997;38:2729–41.

    CAS  PubMed  Google Scholar 

  27. Walia S, Clermont AC, Gao BB, Aiello LP, Feener EP. Vitreous proteomics and diabetic retinopathy. Semin Ophthalmol. 2010;25:289–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, et al. Proteome analysis of human vitreous proteins. Mol Cell Proteom. 2003;2:1177–87.

    Article  CAS  Google Scholar 

  29. Salmi M, Stolen C, Jousilahti P, Yegutkin GG, Tapanainen P, Janatuinen T, et al. Insulin-regulated increase of soluble vascular adhesion protein-1 in diabetes. Am J Pathol. 2002;161:2255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM, Van den Eynde K, Mousa A, et al. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS One. 2013;8:e85857.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, et al. Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44:2163–70.

    Article  PubMed  Google Scholar 

  32. Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene. 2002;21:521323.

    Article  Google Scholar 

  33. Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R, et al. Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene. 2010;29:392–402.

    Article  CAS  PubMed  Google Scholar 

  34. Doyle JL, Haas TL. Differential role of beta-catenin in VEGF and histamine-induced MMP-2 production in microvascular endothelial cells. J Cell Biochem. 2009;107:272–83.

    Article  CAS  PubMed  Google Scholar 

  35. Noda K, Ishida S, Shinoda H, Koto T, Aoki T, Tsubota K, et al. Hypoxia induces the expression of membrane-type 1 matrix metalloproteinase in retinal glial cells. Invest Ophthalmol Vis Sci. 2005;46:3817–24.

    Article  PubMed  Google Scholar 

  36. Ghosh S, Basu M, Roy SS. ETS-1 protein regulates vascular endothelial growth factor-induced matrix metalloproteinase-9 and matrix metalloproteinase-13 expression in human ovarian carcinoma cell line SKOV-3. J Biol Chem. 2012;287:15001–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (London, England). 2006;20:1366–9.

    Article  CAS  Google Scholar 

  38. Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res. 2012;37:416–20.

    Article  CAS  PubMed  Google Scholar 

  39. Barile GR, Chang SS, Park LS, Reppucci VS, Schiff WM, Schmidt AM. Soluble cellular adhesion molecules in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Curr Eye Res. 1999;19:219–27.

    Article  CAS  PubMed  Google Scholar 

  40. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112:806–16.

    Article  PubMed  Google Scholar 

  41. Limb GA, Hickman-Casey J, Hollifield RD, Chignell AH. Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1999;40:2453–7.

    CAS  PubMed  Google Scholar 

  42. Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol. 2005;5:760–71.

    Article  CAS  PubMed  Google Scholar 

  43. Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem. 2009;284:25602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murata M, Noda K, Kawasaki A, Yoshida S, Dong Y, Saito M, et al. Soluble vascular adhesion protein-1 mediates spermine oxidation as semicarbazide-sensitive amine oxidase: possible role in proliferative diabetic retinopathy. Curr Eye Res. 2017;42:1674–1683

    Article  CAS  PubMed  Google Scholar 

  45. Hosoya K, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28:1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ikuyo Hirose, Erdal Tan Ishizuka for their skillful technical assistance. The authors also wish to thank Dr. Yukihoko Mashima for his scientific advice. This work was supported by a Grant-in-Aid for Scientific Research (C) (17K11442, 15K10855, 17K11444) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousuke Noda.

Ethics declarations

Conflicts of interest

S. Yoshida, None; M. Murata, None; K. Noda, None; T. Matsuda, None; M. Saito, None; W. Saito, None; A. Kanda, None; S. Ishida, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Murata, M., Noda, K. et al. Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells. Jpn J Ophthalmol 62, 256–264 (2018). https://doi.org/10.1007/s10384-017-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0555-4

Keywords

Navigation