Skip to main content

Advertisement

Log in

Imaging of trabeculectomy blebs with Visante anterior segment optical coherence tomography after digital ocular compression

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We investigated changes in intrableb morphology of functioning trabeculectomy blebs with anterior segment optical coherence tomography (AS-OCT) after digital ocular compression.

Methods

Sixty-eight patients who underwent fornix-based trabeculectomy were recruited from Seoul St. Mary’s Hospital. Intraocular pressure (IOP) and AS-OCT images were taken before and after ocular compression. Bleb height and wall thickness and height and length of the internal cavity were measured by AS-OCT. The hyporeflective areas and number of microcysts were checked on both vertical and horizontal images. AS-OCT parameters for IOP change, bleb morphology, and interval between surgery and examination were compared.

Results

Ocular compression yielded significant changes for all AS-OCT parameters other than maximum bleb wall thickness in the 6- to 12-month period after surgery. Correlation between IOP change and AS-OCT parameters was greatest for the horizontal and vertical length of the internal cavity (Spearman rank correlation coefficient ρ = 0.717, P < 0.0001, and ρ = 0.866, P < 0.0001, respectively). Response to ocular compression in cystic blebs was mainly enlargement of the internal cavity and increase in bleb height. However, in diffuse filtering blebs, increases in the size of the hyporeflective areas and the number of microcysts were the main findings. From 12 months postoperatively, changes in AS-OCT intrableb parameters were significantly reduced, showing no difference after ocular compression.

Conclusion

Digital ocular compression may be useful in maintaining bleb morphology when it is used for 6 months postoperatively. Response to ocular compression as assessed by bleb morphology was different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cantor LB, Mantravadi A, WuDunn D, Swamynathan K, Cortes A. Morphologic classification of filtering blebs after glaucoma filtration surgery: the Indiana Bleb Appearance Grading Scale. J Glaucoma. 2003;12:266–71.

    PubMed  Google Scholar 

  2. Wells AP, Crowston JG, Marks J, Kirwan JF, Smith G, Clarke JC, et al. A pilot study of a system for grading of drainage blebs after glaucoma surgery. J Glaucoma. 2004;13:454–60.

    PubMed  CAS  Google Scholar 

  3. Parrow KA, Shin DH. Enhancing filtration in the early postoperative trabeculectomy refractory to digital massage. Ophthalmic Surg. 1990;21:401–3.

    PubMed  CAS  Google Scholar 

  4. Traverso CE, Greenidge KC, Spaeth GL, Wilson RP. Focal pressure: a new method to encourage filtration after trabeculectomy. Ophthalmic Surg. 1984;15:62–5.

    PubMed  CAS  Google Scholar 

  5. Kane H, Gaasterland DE, Monsour M. Response of filtered eyes to digital ocular pressure. Ophthalmology. 1997;104:202–6.

    PubMed  CAS  Google Scholar 

  6. Gouws P, Buys YM, Rachmiel R, Trope GE, Fresco BB. Finger massage versus a novel massage device after trabeculectomy. Can J Ophthalmol. 2008;43:222–4.

    PubMed  Google Scholar 

  7. Kane H. What we know about digital ocular massage. Ophthalmology. 1998;5:65–73.

    Google Scholar 

  8. Henderer JD, Heeg MC, Spaeth GL, Moster MR, Myers JS, Schmidt CM Jr, et al. A randomized trial of the long-term effects of digital ocular compression in the late postoperative period. J Glaucoma. 2001;10:266–70.

    PubMed  CAS  Google Scholar 

  9. Leung CK, Yick DW, Kwong YY, Li FC, Leung DY, Mohamed S, et al. Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:340–4.

    PubMed  Google Scholar 

  10. Nakano N, Hangai M, Nakanishi H, Inoue R, Unoki N, Hirose F, et al. Early trabeculectomy bleb walls on anterior-segment optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2010;248:1173–82.

    PubMed  Google Scholar 

  11. Tominaga A, Miki A, Yamazaki Y, Matsushita K, Otori Y. The assessment of the filtering bleb function with anterior segment optical coherence tomography. J Glaucoma. 2010;19:551–5.

    PubMed  Google Scholar 

  12. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    PubMed  CAS  Google Scholar 

  13. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.

    PubMed  CAS  Google Scholar 

  14. Singh M, See JL, Aquino MC, Thean LS, Chew PT. High-definition imaging of trabeculectomy blebs using spectral domain optical coherence tomography adapted for the anterior segment. Clin Exp Ophthalmol. 2009;37:345–51.

    Google Scholar 

  15. Singh M, Aung T, Friedman DS, Zheng C, Foster PJ, Nolan WP, et al. Anterior segment optical coherence tomography imaging of trabeculectomy blebs before and after laser suture lysis. Am J Ophthalmol. 2007;143:873–5.

    PubMed  Google Scholar 

  16. Theelen T, Wesseling P, Keunen JE, Klevering BJ. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs. Graefes Arch Clin Exp Ophthalmol. 2007;245:877–82.

    PubMed  Google Scholar 

  17. Singh M, Chew PT, Friedman DS, Nolan WP, See JL, Smith SD, et al. Imaging of trabeculectomy blebs using anterior segment optical coherence tomography. Ophthalmology. 2007;114:47–53.

    PubMed  Google Scholar 

  18. Aptel F, Dumas S, Denis P. Ultrasound biomicroscopy and optical coherence tomography imaging of filtering blebs after deep sclerectomy with new collagen implant. Eur J Ophthalmol. 2009;19:223–30.

    PubMed  Google Scholar 

  19. Savini G, Zanini M, Barboni P. Filtering blebs imaging by optical coherence tomography. Clin Exp Ophthalmol. 2005;33:483–9.

    Google Scholar 

  20. Miura M, Kawana K, Iwasaki T, Kiuchi T, Oshika T, Mori H, et al. Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy. J Glaucoma. 2008;17:193–6.

    PubMed  Google Scholar 

  21. Nakano N, Hangai M, Nakanishi H, Inoue R, Unoki N, Hirose F, et al. Early trabeculectomy bleb walls on anterior-segment optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2010;8:1173–82.

    Google Scholar 

  22. Tominaga A, Miki A, Yamazaki Y, Matsushita K, Otori Y. The assessment of the filtering bleb function with anterior segment optical coherence tomography. J Glaucoma. 2010;8:551–5.

    Google Scholar 

  23. Wells AP, Cordeiro MF, Bunce C, Khaw PT. Cystic bleb formation and related complications in limbus-versus fornix-based conjunctival flaps in pediatric and young adult trabeculectomy with mitomycin C. Ophthalmology. 2003;110:2192–7.

    PubMed  Google Scholar 

  24. Powers TP, Stewart WC, Stroman GA. Ultrastructural features of filtration blebs with different clinical appearances. Ophthalmic Surg Lasers. 1996;27:790–4.

    PubMed  CAS  Google Scholar 

  25. Addicks EM, Quigley HA, Green WR, Robin AL. Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol. 1983;101:795–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Douk Ahn.

About this article

Cite this article

Park, HY.L., Ahn, M.D. Imaging of trabeculectomy blebs with Visante anterior segment optical coherence tomography after digital ocular compression. Jpn J Ophthalmol 56, 38–45 (2012). https://doi.org/10.1007/s10384-011-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0101-8

Keywords

Navigation