Skip to main content
Log in

An integrated analysis (microfacies and ichnology) of a shallow carbonate-platform succession: upper Aptian, Lower Cretaceous, Betic Cordillera

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Four lithofacies and 12 microfacies types recognized in an upper Aptian section in the Sierra de Bedmar-Jódar (Prebetic of Jaén) represent shallow lagoonal environments (marl and marly limestone) and sand bars that delimited the lagoon. The lagoonal facies reflect subtidal restricted water circulation with low energy. The sand bar facies (intertidal environment) have upper surfaces that show the effects of supratidal and subaerial conditions. The presence of early fractures in particular lithofacies shows the importance of local synsedimentary tectonics during sedimentation. Thalassinoides, ?Arenicolites, Diplocraterion, Circolites, Gastrochaenolites and Trypanites are recorded in different beds of this section, reflecting various states of substrate consistency, in the form of firmground, hardground, and rockground. Whereas firmground conditions were dominant in the lower part of the section, hardgrounds and rockgrounds are mainly present in the upper part of the section. Four types of shallowing-upward elementary sequence are recognized. All the sequences show at the base mudstone or wackestone microfacies representing a lagoonal environment, overlain by sand-bar grain-pack-stone facies corresponding to a bar bounding the lagoon. The factors that controlled their development were carbonate production and tectonic movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguado R, de Gea GA, O’Dogherty L (2014) Integrated biostratigraphy (calcareous nannofossils, planktonic foraminifera, and radiolarians) of an uppermost Barremian–lower Aptian pelagic succession in the Subbetic Basin (southern Spain). Cretac Res 51:153–173

    Article  Google Scholar 

  • Asgaard U, Bromley RB (2006) Echinometra lucunter, Echinometra mathaei and Echinostrephus molaris: three closely related bioeroding echinometrid echinoid and their markedly different bioerosion traces. In: Wisshak M, Löffler S-B, Schulbert Ch, Freiwald A (eds.) 5th International Bioerosion Workshop. Programme and Abstracts, Erlangen, Germany, p 69

  • Benner JS, Ekdale AA, de Gibert JM (2004) Macroborings (Gastrochaenolites) in lower Ordovician hardgrounds of Utah: sedimentologic, paleoecologic, and evolutionary implications. Palaios 19:543–550

    Article  Google Scholar 

  • Bhalla SN, Abba SM (1984) Depositional environment of the Jurassic rocks of Habo Hill, Kutch, India. Bull Cent Rech Explor Prod Elf-Aquitaine 6:35–40

    Google Scholar 

  • Bosence D, Cross N, Hardy S (1998) Architecture and depositional sequences of Tertiary fault-block carbonate platforms; an analysis from outcrop (Miocene, Gulf of Suez) and computer modelling. Mar Pet Geol 15:203–221

    Article  Google Scholar 

  • Boudouresque CF, Verlaque M (2001) Ecology of Paracentrotus lividus. Dev Aquac Fish Sci 32:177–216

    Article  Google Scholar 

  • Bromley RG (1972) On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontologische Zeitschrift 46:93–98

    Article  Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeocol 23:169–197

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils. Biology, taphonomy and applications, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society, London, pp 455–479 (Special Publications 228)

    Google Scholar 

  • Bromley RG, Asgaard U (1993) Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geol Rundsch 82:276–280

    Article  Google Scholar 

  • Buatois LA, Encinas A (2011) Ichnology, sequence stratigraphy and depositional evolution of an upper Cretaceous rocky shoreline in central Chile: bioerosion structures in a transgressed metamorphic basement. Cretac Res 32:203–212

    Article  Google Scholar 

  • Buatois L, Mángano G, Aceñolaza F (2002) Trazas Fósiles. Señales de comportamiento en el Registro Estratigráfico. MEF, Trelew

    Google Scholar 

  • Carmona NB, Ponce JJ, Mángano MG, Buatois LA (2006) Variabilidad de la icnofacies de Glossifungites en el límite entre las Formaciones Sarmiento (Eoceno medio–Mioceno temprano) y Chenque (Mioceno temprano) en el Golfo San Jorge, Chubut, Argentina. Ameghiniana 43:413–425

    Google Scholar 

  • Carmona NB, Mángano MG, Buatois LA, Ponce JJ (2007) Bivalve trace fossils in an early Miocene discontinuity surface in Patagonia, Argentina: burrowing behavior and implications for ichnotaxonomy at the firmground-hardground divide. Palaeogeogr Palaeoclimatol Palaeocol 255:329–341

    Article  Google Scholar 

  • Castro JM (1998) Las plataformas del Valanginiense superior-Albiense superior en el Prebético de Alicante. PhD Thesis Univ de Granada

  • Castro JM, Ruiz-Ortiz PA (1995) Early Cretaceous evolution of the Prebetic Zone in northeast Alicante province: the Sierra de Seguili section. Cretac Res 16:573–598

    Article  Google Scholar 

  • Castro JM, Company M, de Gea GA, Aguado R (2001) Biostratigraphy of the Aptian–Middle Cenomanian platform to basin domain in the Prebetic Zone of Alicante, SE Spain: calibration between shallow water benthic and pelagic scales. Cretac Res 22:145–156

    Article  Google Scholar 

  • Castro JM, de Gea GA, Ruiz-Ortiz PA, Nieto LM (2008) Development of carbonate platforms on an extensional (rifted) margin. The Valanginian–Albian record of the Prebetic of Alicante (SE Spain). Cretac Res 29:848–860

    Article  Google Scholar 

  • Castro JM, de Gea GA, Ruiz-Ortiz PA, Quijano ML, Pancost RD, Jiménez de Cisneros C, Caballero E (2012) Stratigraphy and geochemistry of an early Aptian carbonate platform: interactions between relative sea level and environmental changes (Prebetic Zone, Spain). Geophys Res Abstr 14:6217 (EGU2012-6217 -1)

    Google Scholar 

  • Castro JM, Jiménez de Cisneros C, de Gea GA, Ruiz-Ortiz PA, Quijano ML, Caballero E, Pancost RD (2014) La Formación Almadich en la Sierra de Mariola: caracterización litológica, bioestratigráfica, geoquímica y mineralógica (Aptiense inferior, Cordillera Bética, Alicante). Rev Soc Geol Esp 27:127–136

    Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Amsterdam

    Google Scholar 

  • Chamberlain CK (1978) Recognition of trace fossils in cores. Chapter 5. In: Basan PB (ed.) Trace fossil concepts, vol. 5. Society of Economic Paleontologists and Mineralogists, Short Course, pp 119–166

  • de Gibert JM, Martinell J, Domènech R (1998) Entobia ichnofacies in fossil rocky shores, Lower Pliocene, northwestern Mediterranean. Palaios 13:476–487

    Article  Google Scholar 

  • Domènech R, de Gibert JM, Martinell J (2001) Ichnological features of a marine transgression: middle Miocene rocky shores of Tarragona, Spain. Geobios 34:99–107

    Article  Google Scholar 

  • Ehrenberg K (1944) Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologishe Zeitschrift 23:345–359

    Google Scholar 

  • Ekdale AA (1992) Muckraking and mudslinging: the joys of deposit-feeding. In: Maples CG, West RR (ed.) Trace fossils, vol, 5. Paleontological Society, Short Courses in Paleontology, pp 145–171

  • Ekdale AA, Bromley RG (2001) Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia 34:1–12

    Article  Google Scholar 

  • Erba E, Duncan RA, Bottini C, Tiraboschi D, Weissert H, Jenkyns HC, Malinverno A (2015) Environmental consequences of Ontong Java Plateau and Kerquelen Plateau volcanism. In: Neal CR, Sager WW, Sano T, Erba E (ed.) The Origin, Evolution, and Environmental Consequences of Oceanic Large Igneous Provinces, vol. 511. Geological Society of America Special Paper, pp 271–303

  • Farinati E, Zavala C (2002) Trace fossils on shelly substrate. An example from the Miocene of Patagonia, Argentina. Acta Geol Hisp 37:29–36

    Google Scholar 

  • Föllmi KE, Godet A, Bodin S, Under P (2006) Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21:PA4211. https://doi.org/l0.1029j2006PA001313

  • Frantzis A, Gremare A, Vetion G (1992) Growth rates and RNA:DNA ratios in Paracentrotus lividus (Echinodermata: Echinoidea) fed on benthic macrophytes. J Exp Mar Biol Ecol 156:125–138

    Article  Google Scholar 

  • Frey RW, Curran HA, Pemberton SG (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350

    Google Scholar 

  • Fürsich FT (1974) Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beiträge zur Naturkunde Serie B 13:1–51

    Google Scholar 

  • García-Hernández M, López-Garrido AC, Sanz de Galdeano C, Vera JA, Rivas P (1980) Mesozoic paleogeographic evolution in the External Zones of the Betic Cordillera (Spain). Geol Mijnbouw 59:155–168

    Google Scholar 

  • García-Hernández M, Castro JM, Nieto LM (2001) Los carbonatos del Cretácico Inferior del Prebético de la Sierra de Segura. In: Ruiz-Ortiz PA, Molina JM, Nieto LM, Castro JM, de Gea GA (ed) Itinerarios geológicos por el Mesozoico de la Provincia de Jaén. Departamento de Geología Universidad de Jaén, pp 61–91

  • Gebhardt H, Kuhnt W, Holbourn A (2004) Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco. Mar Micropaleontol 53:133–157

    Article  Google Scholar 

  • Gischler E, Hauser I, Heinrich K, Scheitel U (2003) Characterization of depositional environments in isolated carbonate platforms based on benthic foraminifera, Belize, Central America. Palaios 18:236–255

    Article  Google Scholar 

  • Goldring R (1962) The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläontologische Zeitschrift 36:232–251

    Article  Google Scholar 

  • Hakes WG (1976) Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. University of Kansas Paleontological Contributions 63, pp 1–46

  • Halfar J, Godínez-Orta L, Ingle JC (2000) Microfacies analysis of recent carbonate environments in the Southern Gulf of California, Mexico. A model for warm-temperate to subtropical carbonate formation. Palaios 15:323–342

    Article  Google Scholar 

  • Hecker RF (1980) Sledy bespozvonochnykh i stigmarii v morskikh otlozheniyakh nizhnego karbona moskovskoj sineklizy. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 178:1–78

    Google Scholar 

  • Hernández JC, Russel MP (2010) Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus. J Exp Biol 213:520–525

    Article  Google Scholar 

  • Hillgärtner H (1998) Discontinuity surfaces on a shallow-marine carbonate platform (Berriasian, Valanginian, France and Switzerland). J Sediment Res 68(6):1093–1108

    Article  Google Scholar 

  • Horton BP, Edwards RJ, Lloyd JM (1999) UK intertidal foraminiferal distribution: implication for sea-level studies. Mar Micropaleontol 34:91–106

    Google Scholar 

  • Hughes GW (2003) Agriopleura morphotypes of the Lower Aptian Shu’aiba formation of Saudi Arabia. Geol Croat 56:133–138

    Google Scholar 

  • Hughes GW (2004) Middle to Upper Jurassic Saudi Arabian carbonate petroleum reservoirs: biostratigraphy, micropalaeontology and palaeoenvironments. GeoArabia 9:79–114

    Google Scholar 

  • ITGE (1988) Mapa y memoria explicativa de la Hoja 948 (Torres) a escala 1:50000. IGME, Madrid

    Google Scholar 

  • ITGE (1991) Mapa y memoria explicativa de la Hoja 927 (Baeza) a escala 1:50000. IGME, Madrid

    Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosys 11:Q03004

    Article  Google Scholar 

  • Johnson ME, Gudveig Baarli B, Santos A, Mayoral E (2011) Ichnofacies and microbial build-ups on Late Miocene rocky shores from Menorca (Balearic Islands), Spain. Facies 57:255–265

    Article  Google Scholar 

  • Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807

    Google Scholar 

  • Kobluk DR, Nemcsok S (1982) The macroboring ichnofossils Trypanites in colonies of the Middle Ordovician bryozoans Prasopora: population behavior and reaction to environmental influences. Can J Earth Sci 19:679–688

    Article  Google Scholar 

  • Lamarck JBM (1816) Histoire naturelle des animaux sans vertèbres, Tome Troisième. Verdière, Paris, pp 1–586

  • Larson RL (1991) Latest pulse of the Earth: evidence for a mid-Cretaceous super plume. Geology 19:547–550

    Article  Google Scholar 

  • Larson RL, Erba E (1999) Onset of the mid-Cretaceous greenhouse in the Barremian Aptian: igneous events and the biological, sedimentary and geochemical responses. Paleoceanography 14:663–678

    Article  Google Scholar 

  • Lewis DW, Ekdale AA (1992) Composite ichnofabric of mid-Tertiary unconformity on a pelagic limestone. Palaios 7:222–235

    Article  Google Scholar 

  • Leymerie A (1842) Suite du mémoire sur le terrain crétacé du Département de l’Aube. Mémoires de la Société Géologique de France 5:1–34

    Google Scholar 

  • MacEachern JA, Raychaudhuri I, Pemberton SG (1992) Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record. In: Pemberton SG (ed.) Applications of ichnology to petroleum exploration: a Core Workshop, vol. 17. Society of Economic Paleontologists and Mineralogists. Tulsa Core Workshop, pp 169–198

  • MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: A fifty-year retrospective. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77

    Chapter  Google Scholar 

  • MacEachern JA, Bann KL, Gingras MK, Zonneveld JP, Dashtgard SE, Pemberton SG (2012) The ichnofacies paradigm. In: Knaust D, Bromley RG (ed) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64, Elsevier, Amsterdam, pp. 103–138

  • Mägdefrau K (1932) Uber einige Bohrgange aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift 14:150–160

    Article  Google Scholar 

  • Martín-Chivelet J, Berasategui K, Rosales I, Vilas L, Vera JA, Caus E, Grafe KU, Mas R, Puig C, Segura M, Robles S, Floquet M, Quesada S, Ruiz-Ortiz PA, Fregenal-Martínez MA, Salas R, García A, Martín-Algarra A, Arias C, Meléndez M, Chacón B, Molina JM, Sanz JL, Cástulo JM, García-Hernández M, Carenas B, García-Hidalgo J, Gil J, Ortega E (2002) Cretaceous. In: Gibbons W, Moreno I (eds) The geology of Spain. Geol Soc, London, pp 255–292

    Google Scholar 

  • Martinell J (1981) Actividad erosiva de Paracentrotus lividus (Lmk.) Echinodermata, Echinoidea) en el litoral gerundense. Oecol Aquat 5:219–225

    Google Scholar 

  • Masse JP, Ferneci-Masse M (2013) Drowning events, development and demise of carbonate platforms and controlling factors: the Late Barremian–Early Aptian record of Southeast France. Sed Geol 298:28–52

    Article  Google Scholar 

  • Masse JP, Arias C, Vilas L (1992) Stratigraphy and biozonation of a reference Aptian–Albian p.p. Tethyan carbonate platform succession: the Sierra del Carche Series (oriental Prebetic Zone-Murcia, Spain). New Asp Tethyan Cretac Foss Assem 9:201–221

    Article  Google Scholar 

  • Méhay S, Keller CE, Bernasconi SM, Weissert H, Erba E, Bottini C, Hochuli PA (2009) A volcanic CO2 pulse triggered the Cretaceous oceanic event 1a and a biocalcification crisis. Geology 37:819–822

    Article  Google Scholar 

  • Mikuláš R (1992) Early Cretaceous borings from Stramberk (Czechoclovakia). Cas Miner Geol 37:297–323

    Google Scholar 

  • Molina JM, Nieto LM, Ruiz-Ortiz PA, Castro JM, de Gea GA (2012) El Cretácico Inferior de la Sierra de Jódar-Bedmar (Prebético de Jaén, Cordillera Bética): facies, bioestratigrafía e interpretación paleoambiental. Geogaceta 52:73–76

    Google Scholar 

  • Molina JM, Nieto LM, Ruiz-Ortiz PA, Castro JM, de Gea GA (2015) Secuencias deposicionales marinas someras con estromatopóridos (Aptiense inferior, Prebético, Sierra de Bedmar-Jódar). Geogaceta 57:79–82

    Google Scholar 

  • Muolfi-El-Houari L, Ambroise D, Mathieu R (1999) Distribution des foraminifères benthiques actuels sur la marge continentale algèroise (Baie de Bou-Ismaïl). Rev Micropaléontol 42:315–327

    Article  Google Scholar 

  • Myrow PM (1995) Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems. Palaios 10:58–74

    Article  Google Scholar 

  • Naafs BDA, Castro JM, de Gea GA, Quijano ML, Schmidt DN, Pancost RD (2016) Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat Geosci 9:135–139

    Article  Google Scholar 

  • Najarro M, Rosales I, Martín-Chivelet J (2011) Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: prelude of the Oceanic Anoxic Event la? Sed Geol 235:50–71

    Article  Google Scholar 

  • Nield EW (1984) The boring of Silurian stromatoporids. Towards an understanding of larval behavior in the Trypanites organism. Palaeogeogr Palaeoclimatol Palaeocol 48:229–243

    Article  Google Scholar 

  • Nieto LM, Molina JM, Ruiz-Ortiz PA, Castro JM, de Gea GA (2012) Ciclos de somerización en un lagoon de baja energía (Aptiense de la Sierra de Jódar, Prebético de Jaén. Cordillera Bética). Geotemas 13:83–87

    Google Scholar 

  • Pemberton SG, Frey RW (1985) The Glossifungites ichnofacies: modern examples from the Georgia coast, USA. In: Curran HA (ed) Biogenic Structures: Their Use in Interpreting Depositional Environments, vol. 35. Society of Economic Paleontologists and Mineralogists, Tulsa, Special Publications, pp 237–259

  • Pemberton SG, MacEachern JA (2005) Significance of ichnofossils in applied stratigraphy. In: Koutsoukos EA (ed) Applied stratigraphy. Springer, Dordrecht, pp 281–302

    Google Scholar 

  • Pemberton SG, Frey RW, Ranger MJ, MacEachern JA (1992) The conceptual framework of ichnology. In: Pemberton SG (ed) Applications of Ichnology to Petroleum Exploration: A Core Workshop, vol. 17. Society of Economic Paleontologists and Mineralogists, Tulsa, Core Workshop, pp 1–32

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems, Vol. 15. Geological Association of Canada, Short Course Notes, pp 342

  • Pemberton SG, MacEachern JA, Saunders T (2004) Stratigraphic applications of substrate-specific ichnofacies: delineating discontinuities in the rock record. In: McIlroy D (ed.) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis, vol. 228. Geological Society, London, Special Publications, pp 29–62

  • Reolid M, Nieto LM, Rey J (2010) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian Palaeomargin, Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271

    Article  Google Scholar 

  • Reolid M, Sánchez-Quiñónez CA, Alegret L, Molina E (2015) Palaeoenvironmental turnover across the Cenomanian–Turonian transition in Oued Bahloul, Tunisia: foraminifera and geochemical proxies. Palaeogeogr Palaeoclimatol Palaeoecol 417:491–510

    Article  Google Scholar 

  • Reolid M, Sánchez-Quiñónez CA, Alegret L, Molina E (2016) The biotic crisis across the Oceanic Anoxic Event 2: palaeoenvironmental inferences based on foraminifera and geochemical proxies from the South Iberian Paleomargin. Cretac Res 60:1–27

    Article  Google Scholar 

  • Rice ME (1969) Possible boring structures of sipunculids. Am Zool 9:803–812

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Pérez-Valera F, Pérez-López A (2007) Ichnological analysis in high-resolution sequence stratigraphy: the Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sed Geol 198:293–307

    Article  Google Scholar 

  • Ruiz-Ortiz PA, de Gea GA, Castro JM, García-García F, Molina JM, Nieto LM (2014) Datos y reflexiones para la reconstrucción paleogeográfica de un sector centro-septentrional (entre Bedmar y Jaén) de la Cordillera Bética durante el Cretácico Inferior. Rev Soc Geol Esp 27:111–126

    Google Scholar 

  • Salter JW (1857) On annelid-burrows and surface-markings from the Cambrian rocks of the Longmynd, No. 2. Geol Soc Lond Quat J 13:199–206

    Article  Google Scholar 

  • Santos A, Mayoral E, da Silva CM, Cachão M, Domènech R, Martinell J (2008) Trace fossil assemblages on Miocene rockyshores of southern Iberia. In: Wisshak M, Tapanila L (ed.) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer-Verlag, Heidelberg, pp. 431–450

  • Santos A, Mayoral E, da Silva CM, Cachão M, Johnson ME, Baarli BG (2011) Miocene intertidal zonation on a volcanically active shoreline: Porto Santo in the Madeira Archipelago (Portugal). Lethaia 44:26–32

    Article  Google Scholar 

  • Santos A, Mayoral E, Johnson ME, Gudveig Baarli B, Cachão M, Marques da Silva C, Ledesma-Vázquez J (2012) Extreme habitat adaptation by boring bivalves on volcanically active paleoshores from North Atlantic Macaronesia. Facies 58:325–338

    Article  Google Scholar 

  • Santos A, Mayoral E, Dumont CP, da Silva CM, Ávila SP, Gudveig Baarli B, Cachão M, Johnson ME, Ramalho RS (2015) Role of environmental change in rock-boring echinoid trace fossils. Palaeogeogr Palaeoclimatol Palaeocol 432:1–14

    Article  Google Scholar 

  • Sanz de Galdeano C (2003) Presencia de estructuras oblicuas en el sector central del Subbético y significado de la Falla de Tíscar (Cordillera Bética). Rev Soc Geol España 16:103–110

    Google Scholar 

  • Savazzi E (1999) Boring, nestling and tube-dwelling bivalves. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. John Wiley and Sons, New York, pp 205–237

    Google Scholar 

  • Schudack U, Schudack M (2009) Ostracod biostratigraphy in the Lower Cretaceous of the Iberian chain (eastern Spain). J Iber Geol 35:141–168

    Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117

    Article  Google Scholar 

  • Souliemarsche I (1994) The paleoecological implications of the charophyte flora of the Trinity Division, Junction, Texas. J Paleontol 68:1145–1157

    Article  Google Scholar 

  • Strasser A, Samankassou E (2003) Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda vs. Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France). Geol Croat 56:1–18

    Google Scholar 

  • Strasser A, Pittet B, Hillgärtner H, Pasquier J-B (1999) Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for high-resolution analysis. Sed Geol 128:201–221

    Article  Google Scholar 

  • Tapanilla L, Roberts EM, Bouaré ML, Sissoko F, O’Leary MA (2004) Bivalve borings in phosphatic coprolites and bone, Cretaceous–Paleogene, Northeastern Mali. Palaios 19:565–573

    Article  Google Scholar 

  • Tasli K, Öser E, Koç H (2006) Benthic foraminiferal assemblages of the Cretaceous platform carbonate succession in the Yavca area (Bolkar Mountains, S Turkey): biostratigraphy and paleoenvironments. Geobios 39:521–533

    Article  Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Torell O (1870) Petrificata Suecana Formationis Cambricae. Lunds Universitet Årsskrift 6 [2(8)]: 1–14

  • Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell, London

    Book  Google Scholar 

  • Uchman A, Kleemann K, Rattazzi B (2017) Macroborings, their tracemakers and nestlers in clasts of a fan delta: the Savignone Conglomerate (Lower Oligocene), Northern Apennines, Italy. Neues Jb Geol Paläontol Abh 283(1):35–51. https://doi.org/10.1127/njgpa/2017/0625

    Article  Google Scholar 

  • Vakicek V, Juracic M, Bajraktarevic Z, Cosovic V (2000) Benthic foraminiferal assemblages in a restricted environment; an example from Mjlet Lakes (Adriatic Sea, Croatia). Geol Croat 53:269–279

    Google Scholar 

  • Vicente A, Martín-Closas C (2013) Lower Cretaceous charophytes from the Serranía de Cuenca, Iberian Chain: taxonomy, biostratigraphy and palaeoecology. Cretac Res 40:227–242

    Article  Google Scholar 

  • Vilas L, Masse JP, Arias C (1995) Orbitolina episodes in carbonate platform evolution: the early Aptian model from SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 119:35–45

    Article  Google Scholar 

  • Vilas L, Castro JM, Martín-Chivelet J, Company M, Ruiz-Ortiz PA, Arias C, Chacón B, de Gea GA, Estévez A (2004) El Prebético del sector Oriental. In: Vera JA (ed) Geología de España. SGE-IGM, Madrid, pp 361–363

    Google Scholar 

  • Weissert H, Iini A, Rillmi KB, Kuhn O (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr Palaeoclimatol Palaeoecol 137:189–203

    Article  Google Scholar 

  • Wilkinson IP (2011) Ostracoda during the Early Aptian (Early Cretaceous) greenhouse period on the Isle of Wight, England. Proc Geol Assoc 122:809–815

    Article  Google Scholar 

  • Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 356–367

    Chapter  Google Scholar 

  • Zenker JC (1836) Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medicinischer Beziehung. Freidrich Frommann, Jena

    Google Scholar 

  • Ziegler PA (1988) Evolution of the Artic-North Atlantic and the Western Tethys. AAPG Memoir 43

Download references

Acknowledgements

The research by Rodríguez-Tovar was funded by Project CGL2015-66835-P (Secretaría de Estado de I+D+I, Spain), the Research Group RNM-178 (Junta de Andalucía), and the Unidad Científica de Excelencia (UCE-2016-05, Univ. Granada). For the rest of the authors, funding came from Project CGL2014-55274-P (Secretaría de Estado de I+D+I, Spain) and Research Group RNM-200 (Junta de Andalucía). P.W. Skelton and J.P. Masse are thanked for their help in the determination of rudists and orbitolinids, respectively. We acknowledge Mr Antonio Piedra-Martínez, Technician of the Laboratory of Geology (University of Jaén). The comments of the Editor, Dr. Tucker, and both reviewers, Dr. Uchman and Dr. Corbí, have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieto, L.M., Reolid, M., Rodríguez-Tovar, F.J. et al. An integrated analysis (microfacies and ichnology) of a shallow carbonate-platform succession: upper Aptian, Lower Cretaceous, Betic Cordillera. Facies 64, 4 (2018). https://doi.org/10.1007/s10347-017-0515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-017-0515-y

Keywords

Navigation