Skip to main content

Advertisement

Log in

Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: an approach based on satellite earth observation data

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Land use and land cover change (LULCC) is one of the main components of current anthropogenic global change. Unravelling the ecological response of biodiversity to the combined effect of land use change and other stressors is essential for effective conservation. For this purpose, we used co-inertia analysis to combine LULCC analysis of earth observation satellite data-derived maps and raptor data obtained from road censuses conducted in 2001 and 2014 at sampling unit level (10 km2 spatial resolution), in northwestern Spain (province of Ourense, c. 7281 km2). In addition, habitat suitability models were also computed using ten widely used single-modelling techniques providing an ensemble of predictions at landscape level (four spatial resolutions: 500-m, 1-km, 2-km and 5-km radius around each sighting) for each year and raptor species to analyse the habitat suitability changes in the whole study area through three niche overlap indices. The models revealed an increase in occurrence and habitat suitability of forest raptor species coupled with a strong decrease in species associated with open habitats, mainly heaths and shrub formations. Open-habitat specialist species were negatively affected by the concomitant effects of intensive forest management and a long-lasting trend of rural abandonment coupled with an unusually high frequency of wildfires. Sustainable forest management and agricultural practices should be encouraged by both public and private sectors, through, e.g. policies related to European funds for rural and regional development (FEDER and FEADER programs) to effectively protect threatened habitats and species, and to comply with current environmental legislation. The combined use of satellite imagery and ground-level biodiversity data proved to be a cost-effective and systematic method for monitoring priority habitats and their species in highly dynamic landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Andersen DE (2007) Survey techniques. Raptor research and management techniques manual. In: Bird DM, Bildstein KL (eds) Raptor Research Foundation. Hancock House Publishers, Blaine, pp 89–100

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Glob Ecol Biogeogr 14:17–30

    Article  Google Scholar 

  • Arcos JM, Bécares J, Villero D, Brotons L, Rodríguez B, Ruiz A (2012) Assessing the location and stability of foraging hotspots for pelagic seabirds: an approach to identify marine important bird areas (IBAs) in Spain. Biol Conserv 156:30–42

    Article  Google Scholar 

  • Baeza MJ, De Luís M, Raventós J, Escarré A (2002) Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J Environ Manag 65:199–208

    Article  CAS  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Bednarz JC (2007) Study design, data management, analysis, and presentation. Raptor research and management techniques manual. In: Bird DM, Bildstein KL (eds) p 73–88

  • Bird DM, Bildstein KL (eds) (2007) Raptor and management techniques. Raptor Research Foundation. Hancock House Publishers, Blaine

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brook BW, Brook BW, Sodhi NS, Bradshawet CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Article  PubMed  Google Scholar 

  • Burgas D, Byholm P, Parkkima T (2014) Raptors as surrogates of biodiversity along a landscape gradient. J Appl Ecol 51:786–794

    Article  Google Scholar 

  • Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306

    Article  Google Scholar 

  • Calviño-Cancela M, Rubido-Bará M, Van Etten EJB (2012) Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecol Manag 270:153–162

    Article  Google Scholar 

  • Calvo-Iglesias MS, Fra-Paleo U, Diaz-Varela RA (2009) Changes in farming system and population as drivers of land cover and landscape dynamics: the case of enclosed and semi-openfield systems in northern Galicia (Spain). Landsc Urban Plan 90:168–177

    Article  Google Scholar 

  • Chas-Amil ML, Prestemon JP, McClean CJ, Touza J (2015) Human-ignited wildfire patterns and responses to policy shifts. Appl Geogr 56:164–176

    Article  Google Scholar 

  • Chas-Amil ML, Touza J, Prestemon JP (2010) Spatial distribution of human-caused forest fires in Galicia (NW Spain). Ecol Envir 137:247–258

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Corbelle-Rico E, Crecente-Maseda R (2008) O abandono de terras: concepto teórico y consecuencias. Rev Gal Econ 17:47–62

    Google Scholar 

  • Cristofoli S, Monty A, Mahy G (2010) Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landscape Urban Plan 98:92–98

    Article  Google Scholar 

  • Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11:1278–1286

    Article  PubMed  Google Scholar 

  • Dax T (2005) The redefinition of Europe’s less favoured areas. 3rd annual conference ‘Rural Development in Europe’—funding European rural development in 2007–2013. MPRA paper no. 711

  • De Cáceres M, Brotons L, Aquilue N, Fortin MJ (2013) The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–1547

    Article  Google Scholar 

  • Dicks LV, Ashpole JE, Dänhardt J, James K, Jönsson A, Randall N, Showler DA, Smith RK, Turpie S, Williams D, Sutherland WJ (2013) Farmland conservation: evidence for the effects of interventions in northern and western Europe. Pelagic Publishing, Exeter

    Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–295

    Article  Google Scholar 

  • Donázar JA, Cortés-Avizanda A, Fargallo JA, Margalida A, Moleón M, Morales-Reyes Z, Moreno-Opo R, Pérez-García JM, Sánchez-Zapata JA, Zuberogoitia I, Serrano D (2016) Roles of raptors in a changing world: from flagships to providers of key ecosystem services. Ardeola 63:181–234

    Article  Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • EASAC, European Academies Science Advisor Council (2005) A user’s guide to biodiversity indicators. The Royal Society, London

    Google Scholar 

  • Eastman JR (2012) IDRISI Selva. Clark University, Worcester, Clark Labs

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fagúndez J (2012) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111:151–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515

    Article  Google Scholar 

  • Farrel L (ed) (1983) Heathland management. Nature Conservancy Council, Pterborough

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Franklin J, Miller JA (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New York

    Google Scholar 

  • Gil-Tena A, Brotons L, Saura S (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob Change Biol 15:474–485

    Article  Google Scholar 

  • Gimingham CH (1994) Lowland heaths of West Europe: management for conservation. Phytocoenologia 24:615–626

    Article  Google Scholar 

  • Gonçalves J, Alves P, Pôças I, Marcos B, Sousa-Silva R, Lomba Â, Civantos E, Monteiro A, Honrado J (2015) Combining niche models and remote sensing to explore short-term habitat suitability temporal dynamics and improving biodiversity monitoring, 35th EARSeL Symposium–European Remote Sensing: Progress, Challenges and Opportunities. Stockholm, pp. 15–18

  • González-Varo JP, Albaladejo RG, Aizen MA, Arroyo J, Aparicio A (2015) Extinction debt of a common shrub in a fragmented landscape. J Appl Ecol 52:580–589

    Article  Google Scholar 

  • Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology, 3rd edn. Sinauer

  • Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M-N, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models?. Remote Sens Ecol Conserv 1:4–18

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Herrando S, Brotons L, Estrada J, Guallar S, Anton M (eds) (2011) Catalan winter bird atlas 2006–2009. Institut Català d’Ornitologia and Lynx Edicions, Barcelona

  • Irving JA (2002) Warwickshire coventry and solihull local biodiversity action plan. Lowland Heathland. Warwickshire County Council, Warwick, UK

  • Kleijn D, Baquero RA, Clough Y, Díaz M, de Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kröel-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, De Dato G, Dukes JS, Emmett B, Estiarte M, Garadnai J, Kongstad J, Kovács-Láng E, Larsen KS, Liberati D, Ogaya R, Riis-Nielsen T, Smith AR, Sowerby A, Tietema A, Peñuelas J (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:6682

    Article  PubMed  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:264–271

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kreme A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstöma M, Manfred JL, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lomba A, Guerra C, Alonso J, Honrado JP, Jongman R, McCracken D (2014) Mapping and monitoring high nature value farmlands: challenges in European landscapes. J Environ Manag 143:140–150

    Article  Google Scholar 

  • López-Bao JV, Sazatornil V, Llaneza L, Rodríguez A (2013) Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conserv Lett 6:448–455

    Article  Google Scholar 

  • MAGRAMA (2014) Estadísticas de incendios forestales. Retrieved June 12, 2014 from – http://www.magrama.gob.es/es/biodiversidad/temas/defensa-contra-incendios-forestales/

  • Mairota P, Cafarelli B, Didham R, Lovergine FP, Lucas RM, Nagendra H, Rocchini D, Tarantino C (2015) Challenges and opportunities in harnessing satellite remote-sensing for biodiversity monitoring. Ecol Inform 30:207–214

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Maruca SL, Jacquez GM (2002) Area-based tests for association between spatial patterns. J Geogr Syst 4:69–83

    Article  Google Scholar 

  • Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Godoy Teixeira AM, Pardini R (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177

    Article  Google Scholar 

  • Morán-Ordoñez A (2013) Modelado espacio-temporal de los servicios que proporciona la biodiversidad en los matorrales de la Cordillera Cantábrica (NO España). Efectos de los cambios socioeconómicos a varias escalas Ecosistemas 22:124–127

    Google Scholar 

  • Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, de Luis E (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian mountains (NW Spain). Divers Distrib 18:588–602

    Article  Google Scholar 

  • Moreira F, Ferreira PG, Rego FC, Bunting S (2001) Landscape changes and breeding bird assemblages in northwestern Portugal: the role of fire. Landsc Ecol 16:175–187

    Article  Google Scholar 

  • Mortelliti A, Michael DR, Lindenmayer DB (2015) Contrasting effects of pine plantations on two skinks: results from a large-scale ‘natural experiment’ in Australia. Anim Conserv 18:433–441

    Article  Google Scholar 

  • Navarro LM, Pereira HM (2012) Rewilding abandoned landscapes in Europe. Ecosystems 15:900–912

    Article  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ, Chng CW, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JP, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    Article  CAS  PubMed  Google Scholar 

  • O’Toole L (2014) The future of rural Ireland. Can we restore sense of pride and value in managing small marginal farms? Bulletin of the Golden Eagle Trust 6:21–24

    Google Scholar 

  • Palomino D, Carrascal LM (2006) Urban influence on birds at a regional scale: a case study with the avifauna of northern Madrid province. Landscape Urban Plan 77:276–290

    Article  Google Scholar 

  • Petrou ZI, Manakos I, Stathaki T (2015) Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodivers Conserv 24:2333–2363

    Article  Google Scholar 

  • Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos T Roy Soc B 369:20130190

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pinilla J (2015) Repercusiones de la transformación de un paisaje agrario: El caso del aguilucho cenizo en Tierra de Barros, XIII Congreso de Aguiluchos ibéricos, Valsaín. GREFA & AMUS

  • Plieninger T, van der Horst D, Schleyer C, Bieling C (2014) Sustaining ecosystem services in cultural landscapes. Ecol Soc 19:59

    Article  Google Scholar 

  • Queiroz C, Beilin R, Folke C, Lindborg R (2014) Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 12:288–296

    Article  Google Scholar 

  • R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramil-Rego P, Rodríguez Guitián MA, López Castro H, Ferreiro da Costa J, Muñoz Sobrino C (2013) Loss of European dry heaths in NW Spain: a case study. Diversity 5:557–580

    Article  Google Scholar 

  • Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L (2016a) Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96

    Article  Google Scholar 

  • Regos A, Domínguez J, Gil-Tena A, Brotons L, Ninyerola M, Pons X (2016b) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Reg Environ Chang 16:199–211

    Article  Google Scholar 

  • Regos A, Ninyerola M, Moré G, Pons X (2015) Linking land cover dynamics with driving forces in mountain landscape of the northwestern Iberian peninsula. J Appl Earth Obs 38:1–14

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction, 4rd edn. Springer, Berlin

    Google Scholar 

  • Rodríguez-Guitián MA, Ramil-Rego P (2007) Revisión de las clasificaciones climáticas aplicadas al territorio gallego desde una perspectiva biogeográfica. Recursos Rurais 1:31–53

  • Rodríguez-Lado L, Martínez-Cortizas A (2015) Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma 245:65–73

    Article  Google Scholar 

  • Rodríguez-Lado L, Tapia L (2012) Suitable breeding habitat for golden eagle (Aquila chrysaëtos) in a border of distribution area in northwestern Spain: advantages of using remote sensing information vs land use maps. Vie Milieu 62:77–85

    Google Scholar 

  • Rodríguez-Lado L, Tapia del Río L, Pérez M, Taboada T, Martínez-Cortizas A, Macías F (2016). Atlas digital de propiedades de suelos de Galicia. Univ. Santiago de Compostela, 112 pp

  • Rosa García R, García U, Osoro K, Celaya R (2011) Ground-dwelling arthropod assemblages of partially improved heathlands according to the species of grazer and grazing regime. Eur J Entomol 108:107–115

    Article  Google Scholar 

  • Sánchez-Oliver JS, Rey Benayas JM, Carrascal LM (2015) Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland. PeerJ. doi:10.7717/peerj.1453

    PubMed  PubMed Central  Google Scholar 

  • Sedláková I, Chytrý M (1999) Regeneration patterns in a central European dry heathland: effects of burning, sod-cutting and cutting. Plant Ecol 143:77–87

    Article  Google Scholar 

  • Sergio F, Newton I, Marchesi L (2005) Top predators and biodiversity. Nature 436:192

    Article  CAS  PubMed  Google Scholar 

  • Simes N, Day J (2003) A practical guide to the restoration and management of lowland heathland. The Royal Society for the Protection of Birds, Bedforshire

    Google Scholar 

  • Sirami C, Brotons L, Martin JL (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–45

    Google Scholar 

  • Sirami C, Brotons L, Martin JL (2009) Do bird spatial distribution patterns reflect population trends in changing landscapes? Landsc Ecol 24:893–906

    Article  Google Scholar 

  • Soliño M, Prada A, Vázquez MX (2010) Designing a forest-energy policy to reduce forest fires in Galicia (Spain): a contingent valuation application. J For Econ 16:217–233

    Article  Google Scholar 

  • Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, Van Doorn A, De Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46

    Article  CAS  Google Scholar 

  • Tapia L, Domínguez J, Rodríguez L (2004) Modeling habitat use and distribution of hen harriers (Circus cyaneus) and Montagu's harrier (Circus pygargus) in a mountainous area in Galicia, northwestern Spain. J Raptor Res 38:133–140

    Google Scholar 

  • Tapia L, Domínguez J, Rodríguez J (2008) Modelling habitat preferences by raptors in two areas of northwestern Spain using different scales and survey techniques. Vie et Milieu 58:257–262

    Google Scholar 

  • Tapia L, Kennedy P, Mannan B (2007) Habitat sampling. Raptor research and management techniques manual. In: Bird DM &. Bildstein KL, Raptor Research Foundation, Hancock House Publishers, Blaine, pp. 153–169

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Pironon S, Psomas A, Barbet-Massin M, Jiguet F, Lavergne S, Pearman PB, Renaud J, Zupan L, Zimmermann NE (2014) The European functional tree of bird life in the face of global change. Nat Commun 5:3118

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker GM, Evans MI (1997) Habitat for birds in Europe: a conservation strategy for the wider environment. Birdlife International, Cambridge

    Google Scholar 

  • Vázquez de la Cueva A, García del Barrio JM, Ortega Quero M, Sánchez Palomares O (2006) Recent fire regime in peninsular Spain in relation to forest potential productivity and population density. Int J Wildland Fire 15:397–405

    Article  Google Scholar 

  • Vázquez-Pumariño X (2009) Plan Integral de Conservación da Gatafornela (Circus cyaneus L.) e a Tartaraña cincenta (Circus pygargus L.). Consellería de Medio Rural. Dirección Xeral da Conservación da Natureza, Xunta de Galicia, Santiago de Compostela

  • Vázquez-Pumariño, X., Tapia, L., Gil-Carrera, A., 2015. Colapso de la población de Aguilucho cenizo (Circus pygargus) en Galicia entre 2007/2008 y 2015. Metodología, magnitud y posibles causas. XIII Congreso de Aguiluchos ibéricos, Valsaín, GREFA & AMUS

  • Villaescusa R, Díaz R (1998) Segundo Inventario Forestal Nacional (1986–1996). España. Ministerio de Medio Ambiente, ICONA, Madrid

  • Villanueva JA (2005) Tercer Inventario Forestal Nacional (1997–2007). España. Ministerio de Medio Ambiente, ICONA, Madrid

  • Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990

    Article  Google Scholar 

  • Wiacek J (2015) Long-term changes of breeding success in Montagu’s harrier Circus pygargus. Belg J Zool 145:103–114

    Google Scholar 

  • Wisz MS, Hijmans RJ, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

Download references

Acknowledgements

The study was partly funded by the Consellería de Medio Ambiente and the project PGIDTO1MAM2001PR (Xunta de Galicia). Luis Tapia was supported by a post-doctoral grant from the Galician government (Plan Galego de Investigación, Innovación e Crecemento 2011–2015, Plan I2C, Xunta de Galicia). Adrián Regos was supported by EU BON (308454; FP7-ENV-2012, European Commission), FORESTCAST (CGL2014-59742) and NEWFORESTS (PIRSES-GA-2013-612645) projects, and is currently funded by the Xunta de Galicia (post-doctoral fellowship ED481B2016/084-0). We thank J. Bustamante and J. Seoane (Doñana Biological Station, Spanish Research Council, CSIC) for their suggestions about the fieldwork methods. We also thank O. Santa Cruz-Rodríguez, X. Vázquez-Pumariño, M. Romeu, L. Rodríguez-Lado, E. Rego and G. Martín for their assistance with fieldwork. We also thank to David Serrano (Doñana Biological Station, Spanish Research Council, CSIC) and two anonymous referees for their useful comments and suggestions on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tapia.

Additional information

L. Tapia and A. Regos are joint lead authors.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 24 kb)

ESM 3

(DOCX 411 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia, L., Regos, A., Gil-Carrera, A. et al. Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: an approach based on satellite earth observation data. Eur J Wildl Res 63, 40 (2017). https://doi.org/10.1007/s10344-017-1097-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-017-1097-2

Keywords

Navigation