Skip to main content

Advertisement

Log in

Increased tree growth following long-term optimised fertiliser application indirectly alters soil properties in a boreal forest

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

It is well established that nutrient addition influences ecosystem features such as productivity, carbon storage, soil acidification and biodiversity. Less studied are long-term effects of sustained fertiliser application on forest soil characteristics and nutrient supplies, and especially direct and indirect mechanisms underlying changes. We investigated effects of 3 decades versus 1 decade of optimised fertiliser application on soil properties and nutrient supplies in a 30-year-old nutrient optimisation experiment in a Norway spruce plantation in northern Sweden. We tested for direct and indirect effects of fertiliser use through structural equation models and correlations among tree and soil variables. Results showed that soil characteristics, especially organic carbon and nutrient concentrations, were significantly affected by 10- and 30-year fertiliser application. Soil C/N was similar for the short-term versus controls, but decreased for the long-term versus short-term treatment. Although not explicitly measured, it was clear from our analyses and earlier studies at the site that litter accumulation played a key role in explaining these changes in soil properties, while foliar stoichiometry data suggest long-term effects of litter quality. Nutrient supply rates increased more after 30 than 10 years of fertiliser application. Summarized, we showed that the interplay of direct and indirect effects can yield nonlinear patterns over time, as exemplified by soil C/N. Furthermore, we conclude that lagged, indirect effects of fertilisation through altered litter quantity and quality dominate changes in soil characteristics in this forest. These soil characteristics have further relevance to nutrient availability, suggesting that nutrient optimisation can influence soil fertility also indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code and data availability

Data sets and an R script with statistical analyses are available at https://github.com/KevinVanSundert/Flakaliden_EUFR_2020_KVS.

References

  • Addison SL, Smaill SJ, Garrett LG, Wakelin SA (2019) Effects of forest harvest and fertiliser amendment on soil biodiversity and function can persist for decades. Soil Biol Biochem 135:194–205

    Article  CAS  Google Scholar 

  • Ågren GI, Hyvonen R, Nilsson T (2007) Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82:217–227

    Article  Google Scholar 

  • Andersen DC, Adair EC, Nelson SM, Binkley D (2014) Can nitrogen fertilization aid restoration of mature tree productivity in degraded dryland riverine ecosystems? Restor Ecol 22:582–589

    Article  Google Scholar 

  • Andersson P, Berggren D, Nilsson I (2002) Indices for nitrogen status and nitrate leaching from Norway spruce (Picea abies (L.) Karst.) stands in Sweden. For Ecol Manag 157:39–53

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, Meentemeyer V (2001) Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can J For Res 31:292–301

    Article  Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manag 119:51–62

    Article  Google Scholar 

  • Bergh J, Linder S, Bergström J (2005) Potential production of Norway spruce in Sweden. For Ecol Manag 204:1–10

    Article  Google Scholar 

  • Binkley D, Högberg P (2016) Tamm review: revisiting the influence of nitrogen deposition on Swedish forests. For Ecol Manag 368:222–239

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis part 1: physical and mineralogical methods, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 363–375

    Google Scholar 

  • Bol R, Julich D, Brödlin D, Siemens J, Kaiser K, Dippold MA, Spielvogel S, Zilla T, Mewes D, von Blanckenburg F et al (2016) Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research. J Plant Nutr Soil Sci 179:425–438

    Article  CAS  Google Scholar 

  • Bracho R, Vogel JG, Will RE, Noormets A, Samuelson LJ, Jokela EJ, Gonzalez-Benecke CA, Gezan SA, Markewitz D, Seiler JR et al (2018) Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient. For Ecol Manag 424:39–52

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46

    Article  CAS  Google Scholar 

  • Brown IC (1943) A rapid method of determining exchangeable hydrogen and total exchangeable bases of soils. Soil Sci 56:353–358

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosytem ecology. Springer, New York

    Book  Google Scholar 

  • Chen D, Lan Z, Hu S, Bai Y (2015) Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs soil acidification. Soil Biol Biochem 89:99–108

    Article  CAS  Google Scholar 

  • de Vries W, Du E, Butterbach-Bahl K (2014) Short- and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Environ Sustain 9–10:90–104

    Article  Google Scholar 

  • Demoling F, Nilsson LO, Bååth E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379

    Article  CAS  Google Scholar 

  • Dickman S, Bray RH (1940) Colorimetric determination of phosphate. Ind Eng Chem Anal Ed 12:665–668

    Article  CAS  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin FS, Ciais P, Malhi Y, Obersteiner M et al (2014) Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change 4:471–476

    Article  CAS  Google Scholar 

  • Fröberg M, Grip H, Tipping E, Svensson M, Strömgren M, Berggren Kleja D (2013) Long-term effects of experimental fertilization and soil warming on dissolved organic matter leaching from a spruce forest in northern Sweden. Geoderma 200–201:172–179

    Article  CAS  Google Scholar 

  • Gao W, Yang H, Kou L, Li S (2015) Effects of nitrogen deposition and fertilization on N transformations in forest soils: a review. J Soils Sediments 15:863–879

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis part 1: physical and mineralogical methods, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Goodale CL, Aber JD (2001) The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–267

    Article  Google Scholar 

  • Harrell FE Jr (2018) Rms: regression modeling strategies—R package version 51-2. https://www.CRANR-projectorg/package=rms. Accessed 3 Apr 2018

  • Hedwall P-O, Bergh J (2013) Chapter 6-Fertilization in boreal and temperate forests and the potential for biomass production. In: Kellomäki S, Kilpeläinen A, Alam A (eds) Forest bioenergy production management, carbon sequestration and adaptation. Springer, New York, pp 95–110

    Google Scholar 

  • Hedwall P-O, Strengbom J, Nordin A (2013) Can thinning alleviate negative effects of fertilization on boreal forest floor vegetation? For Ecol Manag 310:382–392

    Article  Google Scholar 

  • Hedwall P-O, Gruffman L, Ishida T, From F, Lundmark T, Näsholm T, Nordin A (2018) Interplay between N-form and N-dose influences ecosystem effects of N addition to boreal forest. Plant Soil 423:385–395

    Article  CAS  Google Scholar 

  • Högberg P, Fan H, Quist M, Binkley D, Tamm CO (2006) Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob Change Biol 12:489–499

    Article  Google Scholar 

  • Högberg P, Näsholm T, Franklin O, Högberg MN (2017) Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian Boreal Forests. For Ecol Manag 403:161–185

    Article  Google Scholar 

  • Homeier J, Báez S, Hertel D, Leuschner C (2017) Editorial: tropical forest ecosystem responses to increasing nutrient availability. Front Earth Sci 5:27

    Article  Google Scholar 

  • Huang Z, Clinton PW, Troy Baisden W, Davis MR (2011) Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. Soil Biol Biochem 43:302–307

    Article  CAS  Google Scholar 

  • Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2007) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Article  Google Scholar 

  • IIASA, FAO (2012) In: Fischer G, Nachtergaele FO, Prieler S, Teixeira E, Toth G, van Velthuizen H, Verelst L, Wiberg D (eds) Global Agro-ecological Zones (GAEZ v30). International Institute for Applied Systems Analysis, Laxenburg, Austria and Food and Agricultural Organization of the United Nations, Rome, Italy

  • Ingestad T (1987) New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma 40:237–252

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Jarvis PG, Linder S (2007) Forests remove carbon dioxide from the atmosphere: spruce forest tales! In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International Publishing, Wallingford, pp 60–72

    Chapter  Google Scholar 

  • Jones HS, Beets PN, Kimberley MO, Garrett LG (2011) Harvest residue management and fertilisation effects on soil carbon and nitrogen in a 15-year-old Pinus radiata plantation forest. For Ecol Manag 262:339–347

    Article  Google Scholar 

  • Keene WC, Galloway JN, Holden JD (1983) Measurement of weak organic acidity in precipitation from remote areas of the world. J Geophys Res Oceans 88:5122–5130

    Article  CAS  Google Scholar 

  • Lamarque JF, Dentener F, McConnell J, Ro CU, Shaw M, Vet R, Bergmann D, Cameron-Smith P, Dalsoren S, Doherty R et al (2013) Multi-model mean nitrogen and sulphur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos Chem Phys 13:7997–8018

    Article  CAS  Google Scholar 

  • Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014) Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant Soil 374:73–88

    Article  CAS  Google Scholar 

  • Libiete Z, Bardule A, Lupikis A (2016) Long-term effect of spruce bark ash fertilization on soil properties and tree biomass increment in a mixed scots pine-Norway spruce stand on drained organic soil. Agron Res 14:495–512

    Google Scholar 

  • Lim H, Oren R, Näsholm T, Strömgren M, Lundmark T, Grip H, Linder S (2019) Boreal forest biomass accumulation is not increased by two decades of soil warming. Nat Clim Change 9:49–52

    Article  CAS  Google Scholar 

  • Lindberg N (2003) Soil fauna and global change—responses to experimental drought, irrigation, fertilisation and soil warming. Doctor’s dissertation. Swedish University of Agricultural Sciences. ISSN 1401-6230, ISBN 91-576-6504-4

  • Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol Bull (Copenhagen) 44:178–190

    CAS  Google Scholar 

  • Long X, Chen C, Xu Z, Linder S, He J (2012) Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J Soils Sediments 12:1124–1133

    Article  CAS  Google Scholar 

  • Maaroufi NI, Nordin A, Palmqvist K, Gundale MJ (2016) Chronic nitrogen deposition has a minor effect on the quantity and quality of aboveground litter in a boreal forest. PLoS ONE 11:8

    Article  CAS  Google Scholar 

  • Maaroufi NI, Palmqvist K, Bach LH, Bokhorst S, Liess A, Gundale MJ, Kardol P, Nordin A, Meunier CL (2018) Nutrient optimization of tree growth alters structure and function of boreal soil food webs. For Ecol Manag 428:46–56

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  CAS  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

    Article  CAS  PubMed  Google Scholar 

  • Mayor JR, Wright SJ, Turner BL (2014) Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J Ecol 102:36–44

    Article  CAS  Google Scholar 

  • McMurtrie RE, Näsholm T (2018) Quantifying the contribution of mass flow to nitrogen acquisition by an individual plant root. New Phytol 218:119–130

    Article  PubMed  Google Scholar 

  • Mulder C, Ahrestani FS, Bahn M, Bohan DA, Bonkowski M, Griffiths BS, Guicharnaud RA, Kattge J, Krogh PH, Lavorel S et al (2013) Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. In: Woodward G, Bohan DA (eds) Ecological networks in an agricultural world—advances in ecological research, vol 49. Academic Press, Amsterdam, pp 69–175

    Chapter  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Nohrstedt H-Ö (2001) Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scand J For Res 16:555–573

    Article  Google Scholar 

  • Novotný R, Buriánek V, Šrámek V, Hunová I, Skorepová I, Zapletal M, Lomský B (2016) Nitrogen deposition and its impact on forest ecosystems in the Czech Republic—change in soil chemistry and ground vegetation. iForest Biogeosci For 10:48–54

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745–1753

    Article  Google Scholar 

  • Paulot F, Jacob DJ, Henze DK (2013) Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide. Environ Sci Technol 47:3226–3233

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob Change Biol 14:142–153

    Article  Google Scholar 

  • Qian P, Schoenau JJ (2002) Practical applications of ion exchange resins in agricultural and environmental soil research. Can J Soil Sci 82:9–21

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing. https://www.R-projectorg/. Accessed 16 May 2018

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  CAS  Google Scholar 

  • Remén C, Persson T, Finlay R, Ahlström K (2008) Responses of oribatid mites to tree girdling and nutrient addition in boreal coniferous forests. Soil Biol Biochem 40:2881–2890

    Article  CAS  Google Scholar 

  • Renesson M, Barbieux S, Colinet G (2016) Indicators of phosphorus status in soils: significance and relevance for crop soils in southern Belgium. Biotechnologie Agronomie Société et Environnement 20:257–272

    Google Scholar 

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HLS (2006) Plant nutrition for food security—a guide for integrated nutrient management. FAO, Rome

    Google Scholar 

  • Ryan MG (2013) Three decades of research at Flakaliden advancing whole-tree physiology. Tree Physiol 33:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, Fernández-Martínez M, Sanders TGM, Peñuelas J (2016) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorus across European Pinussylvestris forests: relationships with climate, N deposition and tree growth. Funct Ecol 30:676–689

    Article  Google Scholar 

  • Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, Piao S, Peñuelas J (2017) Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob Change Biol 23:3849–3856

    Article  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S (2013) Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved. Tree Physiol 33:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Smaill SJ, Clinton PW, Greenfield LG (2008) Nitrogen fertiliser effects on litter fall, FH layer and mineral soil characteristics in New Zealand Pinus radiata plantations. For Ecol Manag 256:564–569

    Article  Google Scholar 

  • Smaill SJ, Leckie AC, Clinton PW, Hickson AC (2010) Plantation management induces long-term alterations to bacterial phytohormone production and activity in bulk soil. Appl Soil Ecol 45:310–314

    Article  Google Scholar 

  • Starr M, Saarsalmi A, Hokkanen T, Merilä P, Helmisaari H-S (2005) Models of litterfall production for Scots pine (Pinus sylvestris L) in Finland using stand, site and climate factors. For Ecol Manag 205:215–225

    Article  Google Scholar 

  • Tamm CO, Aronsson A, Popovic B, Flower-Ellis J (1999) Optimum nutrition and nitrogen saturation in Scots pine stands. Studia Forestalia Suecica 206:1–126

    Google Scholar 

  • Horikoshi M, Tang, Y (2016) ggfortify: data visualization tools for statistical analysis results. https://www.CRANR-projectorg/package=ggfortify. Accessed 16 May 2018

  • Tang Y, Horikoshi M, Li WX (2016) ggfortify: unified interface to visualize statistical results of popular R packages. R Journal 8:474–485

    Article  Google Scholar 

  • Ukonmaanaho L, Merilä P, Nöjd P, Nieminen TM (2008) Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environ Res 13:67–91

    CAS  Google Scholar 

  • van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604

    Article  Google Scholar 

  • Van Sundert K, Horemans J, Stendahl J, Vicca S (2018) The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric. Biogeosciences 15:3475–3496

    Article  CAS  Google Scholar 

  • Van Sundert K, Radujković D, Cools N, De Vos B, Etzold S, Fernández-Martínez M, Janssens IA, Merilä P, Peñuelas J, Sardans J, Stendahl J, Terrer C, Vicca S (2019) Towards comparable assessment of the soil nutrient status across scales—review and development of nutrient metrics. Glob Change Biol. https://doi.org/10.1111/gcb.14802

    Article  Google Scholar 

  • Van Sundert K, Brune V, Bahn M, Deutschmann M, Hasibeder R, Nijs I, Vicca S (2020) Post-drought rewetting triggers substantial K release and shifts in leaf stoichiometry in managed and abandoned mountain grasslands. Plant Soil 448:353–368

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48

    Article  Google Scholar 

  • Vicca S, Stocker BD, Reed S, Wieder WR, Bahn M, Fay PA, Janssens IA, Lambers H, Penuelas J, Piao S et al (2018) Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environ Res Lett 13:125006

    Article  CAS  Google Scholar 

  • Wilkinson SR, Grunes DL, Sumner ME (1999) Nutrient interactions in soil and plant nutrition. In: Sumner ME (ed) Handbook of soil science. Taylor and Francis, Leiden

    Google Scholar 

  • Zeng M, de Vries W, Bonten LTC, Zhu Q, Hao T, Liu X, Xu M, Shi X, Shen J (2017) Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ Sci Technol 51:3843–3851

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The experimental forests are part of the Swedish Infrastructure for Ecosystem Science (SITES), sponsored by the Swedish Science Foundation (VR). The study was supported by the Fund for Scientific Research—Flanders (FWO aspirant grant to KVS; FWO research grant to SV), and by the European Research Council grant ERC-SyG-610028 IMBALANCE-P. We also acknowledge support from the ClimMani COST Action (ES1308).

Author information

Authors and Affiliations

Authors

Contributions

SV and KVS planned the study and performed the field and laboratory work. KVS analysed the data and wrote the manuscript. All authors contributed to the discussions and the writing of the manuscript.

Corresponding author

Correspondence to Kevin Van Sundert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Agustín Merino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Sundert, K., Linder, S., Marshall, J.D. et al. Increased tree growth following long-term optimised fertiliser application indirectly alters soil properties in a boreal forest. Eur J Forest Res 140, 241–254 (2021). https://doi.org/10.1007/s10342-020-01327-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01327-y

Keywords

Navigation