Skip to main content

Advertisement

Log in

Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The early post-fire development of mycobiota following a crown fire in mountain pine plantations and a surface fire in Scots pine plantations, and in the corresponding unburnt stands in the coastal sand dunes of the Curonian Spit in western Lithuania was investigated. Species numbers in unburnt Pinus mugo and Pinus sylvestris stands showed annual fluctuation, but in the burnt sites, the numbers of fungi increased yearly, especially in the crown fire plots. Both burnt stand types—P. mugo and P. sylvestris—showed strongly significant (two-way ANOSIM; R = 1, p < 0.05) differences in species composition; the differences between unburnt sites were clearly expressed but less significant (R = 0.86, p < 0.05). Fungal species composition of burnt P. mugo and P. sylvestris sites was qualitatively different from that of corresponding unburnt sites (two-way ANOSIM; R ≥ 0.75, p < 0.05). The chronosequence of mycobiota in surface fire burns was less clearly defined than in crown fire sites, reflecting the greater patchiness of impacts of the surface fire. Although both fire types were detrimental or at least damaging to all functional groups of fungi (saprobic on soil and forest litter, wood-inhabiting, biotrophic, and mycorrhizal and lichenized fungi), their recovery and appearance (fructification) patterns varied between the groups and among the burn types. The end of the early post-fire fungal succession (cessation of sporocarp production of pyrophilous fungi) was recorded 3 years after the fire for both crown and surface fire types, which is earlier than reported by other authors. Rare or threatened fungal species that are dependent on fire regime were not recorded during the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artz RRE, Reid E, Anderson IC, Campbell CD, Cairney JWG (2009) Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils. FEMS Microbiol Ecol 67:397–410. doi:10.1111/j.1574-6941.2009.00650.x

    Article  CAS  PubMed  Google Scholar 

  • Aučina A, Rudawska M, Leski T, Ryliškis D, Pietras M, Riepšas E (2011) Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 21:237–245. doi:10.1007/s00572-010-0341-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Bastias BA, Anderson IC, Rangel-Castro JI, Parkin PI, Prosser JI, Cairney JWG (2009) Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biol Biochem 41:467–472. doi:10.1016/j.soilbio.2008.11.018

    Article  CAS  Google Scholar 

  • Bergeron Y, Leduc A, Harvey BD, Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fenn 36:81–95

    Google Scholar 

  • Berglund H, Jönsson MT, Penttilä R, Vanha-Majamaa I (2011) The effects of burning and dead-wood creation on the diversity of pioneer wood-inhabiting fungi in managed boreal spruce forests. For Ecol Manag 261:1293–1305. doi:10.1016/j.foreco.2011.01.008

    Article  Google Scholar 

  • Brennan KEC, Christie FJ, York A (2009) Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates. Glob Change Biol 15:2958–2971. doi:10.1111/j.1365-2486.2009.02011.x

    Article  Google Scholar 

  • Buechling A, Baker WL (2004) A fire history from tree rings in a high-elevation forest of Rocky Mountain National Park. Can J For Res 34:1259–1273. doi:10.1139/x04-012

    Article  Google Scholar 

  • Carlsson F, Edman M, Holm S, Eriksson A-M, Jonsson BG (2012) Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire. Fungal Biol 116:1025–1031. doi:10.1016/j.funbio.2012.07.005

    Article  PubMed  Google Scholar 

  • Carpenter SE, Trappe JM (1985) Phoenicoid fungi: a proposed term for fungi that fruit after heat treatment of substrate. Mycotaxon 23:203–206

    Google Scholar 

  • Carpenter SE, Trappe JM, Ammirati J Jr (1987) Observation of fungal succession in the Mount St. Helens devastation zone, 1980–1983. Can J Bot 65:716–728

    Article  Google Scholar 

  • Claridge AW, Trappe JM, Hansen K (2009) Do fungi have a role as soil stabilizers and remediators after forest fire. For Ecol Manag 257:1063–1069. doi:10.1016/j.foreco.2008.11.011

    Article  Google Scholar 

  • Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fenn 36:69–80

    Google Scholar 

  • Danusevičius J (2000) Pušies selekcija Lietuvoje. Kilmių atranka, introdukcija, hibridizacija, selekcinė sėklininkystė [Breeding of pines. Provenance transfer, introduction, hybridisation, seed production]. Lututė, Kaunas

  • Daujotas M (1958) Lietuvos pajūrio smėlynų apželdinimas [Aforestation of sands in Lithuanian seacoast]. Mintis, Vilnius

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Favilli F, Cherubini P, Collenberg M, Egli M, Sartori G, Schoch W, Haeberli W (2010) Charcoal fragments in Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). Holocene 20:67–79. doi:10.1177/0959683609348850

    Article  Google Scholar 

  • Galvonaitė A, Misiūnienė M, Valiukas D, Buitkuvienė MS (2007) Lietuvos klimatas [Lithuanian Climate]. Lietuvos hidrometeorologijos tarnyba, Vilnius

    Google Scholar 

  • Gudžinskas Z (2000) Conspectus of alien plant species of Lithuania. 15. Azollaceae, Pinaceae, and Salicaceae. Bot Lith 6:235–242

    Google Scholar 

  • Hallingbäck T (1994) Ekologisk catalog över storsvampar. Sveriges Lantbruksuniversitet, ArtDatabanken, Uppsala

  • Hallingbäck T (1995) Ekologisk catalog över lavar. Sveriges Lantbruksuniversitet, ArtDatabanken, Uppsala

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Ivanova GA, Ivanov VA, Kukavskaya EA, Soja AJ (2010) The frequency of forest fires in Scots pine stands of Tuva, Russia. Environ Res Lett 5:015002 (7 p). doi:10.1088/1748-9326/5/1/015002

  • Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, UK

    Book  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M, Zackrisson O, Karen O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215

    Article  Google Scholar 

  • Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075. doi:10.1111/j.1365-2745.2008.01411.x

    Article  Google Scholar 

  • Junninen K, Kouki J, Renvall P (2008) Restoration of natural legacies of fire in European boreal forests: an experimental approach to the effects on wood-decaying fungi. Can J For Res 308:202–215. doi:10.1139/X07-145

    Article  Google Scholar 

  • Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–126. doi:10.1071/WF07049

    Article  Google Scholar 

  • Kempf A, Scherrer HU (1982) Forstgeschichtliche Notizen zum Walliser Wald. Eidgenössische Anstalt für das forstliche Versuchswesen 243:1–123

    Google Scholar 

  • Ketner-Oostra R, van der Peijl MJ, Sýkora KV (2006) Restoration of lichen diversity in grass-dominated vegetation of coastal dunes after wildfire. J Veg Sci 17:147–156. doi:10.1111/j.1654-1103.2006.tb02434.x

    Article  Google Scholar 

  • Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–473. doi:10.1016/j.funbio.2010.03.008

    Article  PubMed  Google Scholar 

  • Kotiranta H, Saarenoksa R, Kytövuori I (2009) Aphyllophoroid fungi of Finland. A check-list with ecology, distribution, and threat categories. Norrlinia 19:1–223

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edition. Elsevier, Amsterdam

    Google Scholar 

  • Lehtonen H, Kolström T (2000) Forest fire history in Viena Karelia, Russia. Scand J For Res 15:585–590. doi:10.1080/02827580050216833

    Article  Google Scholar 

  • Lygis V, Vasiliauskaite I, Stenlid J, Vasaitis R (2010) Impact of forest fire on occurrence of Heterobasidion annosum s.s. root rot and other wood-inhabiting fungi in roots of Pinus mugo. Forestry 83:83–92. doi:10.1093/forestry/cpp036

    Article  Google Scholar 

  • McMullan-Fisher SJM, May TW, Keane PJ (2002) The macrofungal community and fire in a Mountain Ash forest in southern Australia. Fungal Divers 10:57–76

    Google Scholar 

  • McMullan-Fisher SJM, May TW, Robinson RM, Bell TL, Lebel T, Catcheside P, York A (2011) Fungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directions. Aust J Bot 59:70–90

    Article  Google Scholar 

  • Mueller GM, Bills GF, Foster MS (eds) (2004) Biodiversity of Fungi. Inventory and monitoring methods. Elsevier, Amsterdam

    Google Scholar 

  • Niklasson M, Granström A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499

    Article  Google Scholar 

  • Olšauskas AM (2009) Woody and grassy vegetation development in different landscape elements of the Curonian spit. Environ Res Eng Manag 4(50):30–36

    Google Scholar 

  • Olsson J, Jonsson BG (2010) Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. For Ecol Manag 259:1971–1980. doi:10.1016/j.foreco.2010.02.008

    Article  Google Scholar 

  • Penttilä R, Kotiranta H (1996) Short-term effects of prescribed burning on wood-rotting fungi. Silva Fenn 30:399–419

    Article  Google Scholar 

  • Petersen PM (1970) Danish fireplace fungi. Dansk Bot Ark 27(3):1–97

    Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Rayner ADM, Todd NK (1981) Ecological genetics of basidiomycete populations in decaying wood. Brit Mycol Soc Symp 4:129–142

    Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Robinson RM, Mellican AE, Smith RH (2008) Epigeous macrofungal succession in the first five years following a wildfire in karri (Eucalyptus diversicolor) regrowth forest in Western Australia. Austral Ecol 33:807–820. doi:10.1111/j.1442-9993.2008.01853.x

    Article  Google Scholar 

  • Ryan KC (2002) Dynamic interactions between forest structure and fire behaviour in boreal ecosystems. Silva Fenn 36:13–39

    Google Scholar 

  • Ryvarden L, Gilbertson RL (1993) European polypores. Part 1. Fungiflora, Oslo

  • Ryvarden L, Gilbertson RL (1994) European polypores. Part 2. Fungiflora, Oslo

  • Schmidt O (2006) Wood and tree fungi—biology, damage, protection, and use. Springer, Berlin

    Google Scholar 

  • Stähli M, Finsinger W, Tinner W, Allgöwer B (2006) Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. Holocene 16:805–817. doi:10.1191/0959683606hol967rp

    Article  Google Scholar 

  • Stankevičiūtė J, Rašomavičius V (2009) Fire as possibility of restoration of the Natura 2000 habitats. In: Grasserbauer M, Sakalauskas L, Zavadskas EK (eds) KORSD-2009, Selected papers, Vilnius, pp 466–470

  • Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359

    Article  Google Scholar 

  • Stokland JN, Larsson K-H (2011) Legacies from natural forest dynamic: different effect of forest management on wood-inhabiting fungi in pine and spruce forests. For Ecol Manag 261:1707–1721. doi:10.1016/j.foreco.2011.01.003

    Article  Google Scholar 

  • Thies WG (1990) Effects of prescribed fire on diseases of conifers. In: Walstad JD, Radosevich SR, Sandberg DV (eds) Natural and prescribed fire in Pacific Northwest Forests. Oregon State University Press, Corvalis, pp 117–121

    Google Scholar 

  • Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5:731–742

    Article  Google Scholar 

  • Vrålstad T, Holst-Jensen A, Schumacher T (1998) The postfire discomycete Geopyxis carbonaria (Ascomycota) is a biotrophic root associate with Norway spruce (Picea abies) in nature. Mol Ecol 7:609–616

    Article  PubMed  Google Scholar 

  • Wallenius TH, Kuuluvainen T, Vanha-Majamaa I (2004) Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia. Can J For Res 34:1400–1409. doi:10.1139/X04-023

    Article  Google Scholar 

  • Warcup JH (1990) Occurrence of ectomycorrhizal and saprotrophic discomycetes after a wild fire in a eucalypt forest. Mycol Res 94:1065–1069

    Article  Google Scholar 

  • Weir J, Johnson E, Miyanishi K (2000) Fire frequency and the spatial age mosaic of the mixed-wood boreal forest in western Canada. Ecol Appl 10:1162–1177

    Article  Google Scholar 

  • Zackrisson O (1977) The influence of forest fires in the north Swedish boreal forest. Oikos 29:22–32

    Article  Google Scholar 

  • Zoller H (1981) Pinaceae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa 1(2), 3 Auflage. Paul Parey, Berlin, pp 32–104

    Google Scholar 

Download references

Acknowledgments

We thank Gintaras Kantvilas (Hobart, Tasmania) for improving the language of the manuscript and valuable comments and Dalytė Matulevičiūtė (Vilnius, Lithuania) for supplying data on pine forest associations in the study area. Our sincere gratitude is extended to anonymous reviewers for valuable comments and suggestions for the manuscript. We acknowledge the help from the staff of Kuršių Nerija National Park. The study was supported by the Lithuanian State Science and Studies Foundation (Grants No. T–60/07, T–69/08, and T–52/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurga Motiejūnaitė.

Additional information

Communicated by R. Matyssek.

This article originates from the IUFRO Conference “Biological Reactions of Forests to Climate Change and Air Pollution,” held in Kaunas/Lithuania during May 18–27, 2012, as organized by IUFRO Research Group 7.01.00 in cooperation with COST Action FP 0903 “MAFor,” North American Air Pollution workshop ENVeurope, and ICP monitoring task force (local organizer: Algirdas Augustaitis).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,512 kb)

Supplementary material 2 (XLS 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motiejūnaitė, J., Adamonytė, G., Iršėnaitė, R. et al. Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands. Eur J Forest Res 133, 745–756 (2014). https://doi.org/10.1007/s10342-013-0738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0738-6

Keywords

Navigation