Skip to main content
Log in

Non-destructive techniques to assess body composition of birds: a review and validation study

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Body composition of birds is often used to assess in part the “condition” of individuals in the context of their life history and ecology. We describe contemporary non-destructive (non-lethal) techniques that are available for estimating the body composition of free-living birds. We critically evaluate the strengths and weaknesses of these techniques in the context of bird studies. Although most contemporary techniques are based on theory and first principles, assessing their accuracy and precision requires empirical calibrations. We summarize the results of recent validation studies on songbirds and discuss their implications. Deuterium dilution was the best single technique among those compared for measuring lean and fat dynamics in small songbird species that averaged 9–29 g, although we advocate technique(s) that independently estimate each body component. Interspecific models that estimated lean mass using total body electrical conductivity and structural measure(s), and estimated fat mass using deuterium dilution were as accurate (within 0.3–1.1 g of actual lean mass and 0.2–0.9 g of actual fat mass, respectively, depending on bird species) as intraspecific models for songbirds that averaged 13–29 g in body mass. Thus, separate models for each bird species may not be necessary, and the development and testing of interspecific models for estimating body composition is warranted. Several factors, including body size and physiological state, required accuracy and precision, and the scope of predictions must be carefully considered when any of these non-destructive techniques are used to measure the body composition of birds.

Zusammenfassung

Nicht-destruktive Techniken zur Ermittlung der Körperzusammensetzung von Vögeln: eine kritische Übersicht

Oft wird die Körperzusammensetzung von Vögeln zur ansatzweisen Bewertung der “Kondition” von Individuen im Kontext von Lebenszyklus und Ökologie herangezogen. Hier stellen wir nicht-destruktive (nicht tödliche) Techniken vor, die derzeit zur Ermittlung der Körperzusammensetzung freilebender Vögel zur Verfügung stehen. Die Stärken und Schwächen dieser Methoden werden vor dem Hintergrund ornithologischer Studien kritisch erläutert. Obwohl die meisten heute verwendeten Techniken auf wissenschaftlichen Theorien und Annahmen begründet sind, ist zur Beurteilung ihrer Richtigkeit und Präzision ein empirischer Abgleich notwendig. Hier fassen wir die Ergebnisse neuerer Studien an Singvögeln zusammen und diskutieren deren Bedeutung. Im Vergleich der Techniken zur Messung der “Fett-Mager-Dynamik” bei kleinen Singvogelarten (im Schnitt 9–29 g) schnitt die Bestimmung des Deuteriumgehalts im Körperwasser am besten ab, allerdings würden wir Methoden empfehlen, welche die einzelnen Körperbestandteile einzeln ermitteln. Interspezifische Modelle, welche die Magermasse anhand von TOBEC (Total Body Electrical Conductivity, Gesamtkörperleitfähigkeit) und strukturellen Messgrößen und die Fettmasse anhand des Deuteriumanteils abschätzten, waren gleichermaßen genau (je nach Vogelart zwischen 0.3–1.1 g um den tatsächlichen Wert der Magermasse bzw. 0.2–0.9 g um den tatsächlichen Wert der Fettmasse) wie intraspezifische Modelle für Singvögel mit einer durchschnittlichen Körpermasse von 13–29 g. Daher sind separate Modelle für jede Vogelart möglicherweise nicht notwendig und stattdessen wäre die weitere Entwicklung und Erprobung interspezifischer Modelle zur Schätzung der Körperzusammensetzung wünschenswert. Mehrere Faktoren-unter anderem Körpergröße, physiologischer Zustand, die angestrebte Messgenauigkeit aber auch die Reichweite der daraus gezogenen Schlussfolgerungen-müssen sorgfältig in Betracht gezogen werden, wenn eine solche nicht-destruktive Technik zur Ermittlung der Körperzusammensetzung von Vögeln eingesetzt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afik D, Karasov WH (1995) The trade-offs between digestion rate and efficiency in warblers and their ecological implications. Ecology 76:2247–2257

    Article  Google Scholar 

  • Alisauskas RT, Ankney CD (1992) The cost of egg laying and its relationship to nutrient reserves in waterfowl. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 30–61

    Google Scholar 

  • Anonymous (1993) EM-Scan Model SA-3000 multidetector small animal body composition analysis system. Specifications. EM-SCAN, Springfield

    Google Scholar 

  • Anonymous (1995) Calibrating the EM-Scan/TOBEC Model SA-3000. Specifications. EM-SCAN, Springfield

    Google Scholar 

  • Asch A, Roby D (1995) Some factors affecting precision of the total body electrical conductivity technique for measuring body composition in live birds. Wilson Bull 107:306–316

    Google Scholar 

  • Bailey RO (1979) Methods of estimating total lipid content in the redhead duck (Aythya americana) and an evaluation of condition indices. Can J Zool 57:1830–1833

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (1983) Habitat selection and association of species in European passerine birds during southward, post-breeding migrations. Ornis Scand 14:239–245

    Article  Google Scholar 

  • Bairlein F (1991) Body mass of Garden Warblers (Sylvia borin) on migration: a review of field data. Die Vogelwarte 36:203–212

    Google Scholar 

  • Bauchinger U, Biebach H (2001) Differential catabolism of muscle protein in Garden Warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration. J Comp Physiol B 171:293–301

    Article  PubMed  CAS  Google Scholar 

  • Bauchinger U, McWilliams S, Kolb H, Popenko V, Price E, Biebach H (2011) Flight muscle shape reliably predicts flight muscle mass of migratory songbirds: a new tool for field ornithologists. J Ornithol 152:507–514

    Article  Google Scholar 

  • Bensch S, Nielsen B (1999) Autumn migration speed of juvenile Reed and Sedge Warblers in relation to date and fat loads. Condor 101:153–156

    Article  Google Scholar 

  • Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird Migration: physiology and ecophysiology. Springer-Verlag, Berlin, pp 352–367

    Chapter  Google Scholar 

  • Biebach H (1996) Energetics of winter and migratory fattening. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, New York, pp 280–323

    Chapter  Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of body mass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 69:370–379

    Article  Google Scholar 

  • Blem CR (1990) Avian energy storage. In: Power M (ed) Current ornithology. Plenum Press, New York, pp 59–113

    Google Scholar 

  • Brown ME (1996) Assessing body condition in birds. In: Ketterson ED, Val Nolan J (eds) Current ornithology. Plenum Press, New York, pp 67–135

    Chapter  Google Scholar 

  • Burger MF (1997) Estimating lipid and lean masses in a wintering passerine: an evaluation of TOBEC. Auk 114:762–769

    Article  Google Scholar 

  • Campbell R, Leatherland J (1980) Estimating body protein and fat from water content in Lesser Snow Geese. J Wildl Manage 44:438–446

    Article  Google Scholar 

  • Castro G, Wunder B, Knopf F (1990) Total body electrical conductivity (TOBEC) to estimate total body fat of free-living birds. Condor 92:496–499

    Article  Google Scholar 

  • Child G, Marshall S (1970) Estimating carcass fat and fat-free weight in migrant birds from water content of specimens. Condor 72:116–119

    Article  Google Scholar 

  • Cimprich DA, Moore FR, Guiligoyle MP (2000) Red-eyed Vireo (Vireo olivaceus). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Coltman DW, Bowen WD, Iverson SJ, Boness DJ (1998) The energetics of male reproduction in an aquatically mating pinniped, the harbour seal. Physiol Zool 71:387–399

    Article  PubMed  CAS  Google Scholar 

  • Conway CJ, Eddelman WR, Simpson KL (1994) Evaluation of lipid indices of the Wood Thrush. Condor 96:783–790

    Article  Google Scholar 

  • Dobush GR, Ankney CD, Krementz DG (1985) The effect of apparatus, extraction time, and solvent on lipid extractions of Snow Geese. Can J Zool 63:1917–1920

    Article  CAS  Google Scholar 

  • Drent R, Daan S (1980) Prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252

    Google Scholar 

  • Dunn EH (2000) Temporal and spatial patterns in daily mass gain of Magnolia Warblers during migratory stopover. Auk 117:12–21

    Article  Google Scholar 

  • Eichhorn G, Visser GH (2008) Evaluation of the deuterium dilution method to estimate body composition in the Barnacle Goose: accuracy and minimum equilibration time. Physiol Biochem Zool 81:508–518

    Article  PubMed  Google Scholar 

  • Eichhorn G, van der Jeugd HP, Meijer HAJ, Drent RH (2010) Fueling incubation: differential use of body stores in arctic- and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127:162–172

    Article  Google Scholar 

  • Ellis HI, Jehl R Jr (1991) Total body water and body composition in phalaropes and other birds. Physiol Zool 64:973–984

    Google Scholar 

  • Enser R (2002) Vascular flora of Block Island. In: Paton PW, Gould LL, August PV, Frost AO (eds) The ecology of Block Island. Rhode Island Natural History Survey, Kingston, pp 37–63

    Google Scholar 

  • Falls JB, Kopachena JG (2010) White-throated Sparrow (Zonotrichia albicollis). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Farley SD, Robbins CT (1994) Development of two methods to estimate body composition of bears. Can J Zool 72:220–226

    Article  Google Scholar 

  • Fiorotto ML, Cochran WJ, Funk RC, Sheng H, Klish WJ (1987) Total body electrical conductivity measurements: effects of body composition and geometry. Am J Physiol 252:R794–R800

    PubMed  CAS  Google Scholar 

  • Gannes LZ (1999) Flying, fasting and feeding: the physiology of bird migration in old world Sylvid and Turdid thrushes. PhD dissertation. Princeton University, Princeton

  • Gannes LZ (2002) Mass change pattern of blackcaps refueling during spring migration: evidence for physiological limitations to food assimilation. Condor 104:231–239

    Article  Google Scholar 

  • Gessaman JA, Nagle RD, Congdon JD (1998) Evaluation of the cyclopropane absorption method of measuring avian body fat. Auk 115:175–187

    Article  Google Scholar 

  • Golet GH, Irons DB (1999) Raising young reduces body condition and fat stores in Black-legged Kittiwakes. Oecologia 120:530–538

    Article  Google Scholar 

  • Guglielmo CG, McGuire LP, Gerson AR, Seewagen CL (2011) Simple, rapid, and non-invasive measurements of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J Ornithol 152:S75–S85

    Article  Google Scholar 

  • Hayes JP, Shonkwiler JS (2001) Morphometric indicators of body condition: worthwhile or wishful thinking? In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 8–38

    Chapter  Google Scholar 

  • Hedenström A, Fagerlund T, Rosén M, Wirestam R (2009) Magnetic resonance imaging versus chemical fat extraction in a small passerine, the willow warbler Phylloscopus trochilus: a fat-score based statistical comparison. J Avian Biol 40:457–460

    Article  Google Scholar 

  • Helms CW, Drury WH Jr (1960) Winter and migratory weight and fat field studies on some North American buntings. Bird-banding 31:1–40

    Article  Google Scholar 

  • Heyward VH (2001) ASEP methods recommendation: body composition assessment. J Exercise Physiol 4:1–12

    Google Scholar 

  • Heyward VH, Wagner DR (2004) Applied body composition analysis, 2nd edn. Human Kinetics, Champaign

    Google Scholar 

  • Hicks DL (1967) Adipose tissue composition and cell size in fall migratory thrushes (Turdidae). Condor 69:387–399

    Article  Google Scholar 

  • Hildebrand GV, Farley SD, Robbins CT (1998) Predicting body condition of bears via two field methods. J Wildl Manage 62:406–409

    Article  Google Scholar 

  • Holmes RT, Rodenhouse NL, Sillett TS (2005) Black-throated Blue Warbler (Setophaga caerulescens). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Hunt PD, Flaspohler DJ (1998) Yellow-rumped Warbler (Setophaga coronata). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Johnson DH, Krapu GL, Reinecke KJ, Jorde DJ (1985) An evaluation of condition indices for birds. J Wildl Manage 49:569–575

    Article  Google Scholar 

  • Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits of songbirds. J Field Ornithol 64:246–255

    Google Scholar 

  • Karasov WH, Pinshow B (1998) Changes in lean mass and in organs of nutrient assimilation in a long-distance migrant at a springtime stopover site. Physiol Zool 71:435–448

    Article  PubMed  CAS  Google Scholar 

  • Karasov WH, Han LR, Munger JC (1988) Measurement of D2O by infrared absorbance in doubly labeled water studies of energy expenditure. Am J Physiol 255:R174–R177

    PubMed  CAS  Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164:362–371

    Article  Google Scholar 

  • Klaassen M, Lindstrom A, Zijlstra R (1997) Composition of fuel stores and digestive limitations to fuel deposition rate in the long-distance migratory Thrush Nightingale, Luscinia luscinia. Physiol Zool 70:125–133

    PubMed  CAS  Google Scholar 

  • Klaassen M, Kvist A, Lindstrom A (2000) Flight costs and fuel composition of a bird migrating in a wind tunnel. Condor 102:444–451

    Google Scholar 

  • Kontogiannis JE (1968) Effect of temperature and exercise on energy intake and body weight of the White-throated Sparrow, Zonotrichia albicollis. Physiol Zool 41:54–64

    Google Scholar 

  • Korine C, Daniel S, Tets IGV, Yosef R, Pinshow B (2004) Measuring fat mass in small birds by dual-energy X-ray absorptiometry. Physiol Biochem Zool 77:522–529

    Article  PubMed  Google Scholar 

  • Koteja P (1996) The usefulness of a new TOBEC instrument (ACAN) for investigating body composition in small mammals. Acta Theriologica 41:107–112

    Google Scholar 

  • Krementz DG, Pendelton GW (1990) Fat scoring: sources of variability. Condor 92:500–507

    Article  Google Scholar 

  • Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22

    Article  Google Scholar 

  • Lindström Å, Piersma T (1993) Mass changes in migrating birds: the evidence for fat and protein storage re-examined. Ibis 135:70–78

    Article  Google Scholar 

  • Lyons JE, Haig SM (1995) Estimation of lean and lipid mass in shorebirds using total-body electrical conductivity. Auk 112:590–602

    Google Scholar 

  • Marken-Lichtenbelt WDV (2001) The use of bioelectrical impedance analysis (BIA) for estimation of body composition. In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 161–187

    Chapter  Google Scholar 

  • Mata AJ, Caloin M, Robin J-P, LeMaho Y (2006) Reliability in estimates of body composition of birds: oxygen-18 versus deuterium dilution. Physiol Biochem Zool 79:202–209

    Article  PubMed  Google Scholar 

  • McWilliams SR, Karasov WH (1998) Test of a digestion optimization model: effect of variable-reward feeding schedules on digestive performance of a migratory bird. Oecologia 114:160–169

    Article  Google Scholar 

  • McWilliams SR, Karasov WH (2005) Migration takes guts: digestive physiology of migratory birds and its ecological significance. In: Marra P, Greenberg R (eds) Birds of two worlds. Smithsonian Institution Press, Washington, pp 67–78

    Google Scholar 

  • Moore FR, Kerlinger P (1987) Stopover and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 74:47–54

    Article  Google Scholar 

  • Moore FR, Simons TR (1992) Habitat suitability and stopover ecology of neotropical landbird migrants. In: Hagan JM, Johnston DW (eds) Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, DC, pp 345–355

    Google Scholar 

  • Moore FR, Yong W (1991) Evidence of food-based competition among passerine migrants during stopover. Behav Ecol Sociobio 28:85–90

    Article  Google Scholar 

  • Moore FR, Kerlinger P, Simons TR (1990) Stopover on a Gulf coast barrier island by spring trans-Gulf migrants. Wilson Bull 102:487–500

    Google Scholar 

  • Morton JM, Kirkpatrick RL, Smith EP (1991) Comments on estimating total body lipids from measure of lean mass. Condor 93:463–465

    Article  Google Scholar 

  • Nagy TR (2001) The use of dual-energy X-ray absorptiometry for the measurement of body composition. In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 211–229

    Chapter  Google Scholar 

  • Odum EP, Rogers DT, Hicks DL (1964) Homeostasis of nonfat components of migrating birds. Science 143:1037–1039

    Article  PubMed  CAS  Google Scholar 

  • Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort. Comp Biochem Physiol 122A:37–44

    CAS  Google Scholar 

  • Parrish JD (1997) Patterns of frugivory and energetic condition in nearctic landbirds during autumn migration. Condor 99:681–697

    Article  Google Scholar 

  • Parrish JD (2000) Behavioral, energetic, and conservation implications of foraging plasticity during migration. Studies Avian Biol 20:53–70

    Google Scholar 

  • Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332

    Article  Google Scholar 

  • Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, New York

    Google Scholar 

  • Petit DR (2000) Habitat use by landbirds along nearctic-neotropical migration routes: implications for conservation of stopover habitats. Stud Avian Biol 20:15–33

    Google Scholar 

  • Piersma T, Klaassen M (1999) Methods of studying the functional ecology of protein and organ dynamics in birds. In: Adams NJ, Slotow RH (eds) Proc 22nd Int Ornithological Congress. BirdLife South Africa, Durban, pp 36–51

    Google Scholar 

  • Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12:134–138

    Article  PubMed  CAS  Google Scholar 

  • Podlesak DW, McWilliams SR, Hatch KA (2005) Stable isotopes in breath, blood, feces and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142:501–510

    Article  PubMed  Google Scholar 

  • Purvis JR, Gabbert AE, Brown ML, Flake LD (1999) Estimation of ring-necked pheasant condition with total body electrical conductivity. Wildl Soc Bull 27:216–220

    Google Scholar 

  • Pyle P (1997) Identification guide to North American birds. Part 1. Braun-Brumfield, Ann Arbor

  • Reinert SE, Lapham E, Gaffett K (2002) Landbird migration on Block Island: community composition and conservation implications for an island stopover habitat. In: Paton PW, Gould LL, August PV, Frost AO (eds) The ecology of Block Island: proceedings of the Rhode Island Natural History Survey Conference. Rhode Island Natural History Survey, Kingston, pp 151–163

    Google Scholar 

  • Reynolds DS, Kunz TH (2001) Standard methods for destructive body composition analysis. In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 39–55

    Chapter  Google Scholar 

  • Roby D (1991) A comparison of two noninvasive techniques to measure total body lipid in live birds. Auk 108:509–518

    Article  Google Scholar 

  • Rogers CM (1991) An evaluation of the method of estimating body fat in birds by quantifying visible subcutaneous fat. J Field Ornithol 62:349–356

    Google Scholar 

  • Rogers CM (2003) New and continuing issues with using visible fat classes to estimate fat stores of birds. J Avian Biol 34:129–133

    Article  Google Scholar 

  • Rumpler WV, Allen ME, Ullrey DE, Earle RD, Schmitt SM, Cooley TM (1987) Body composition of white-tailed deer estimated by deuterium oxide dilution. Can J Zool 65:204–208

    Article  Google Scholar 

  • Sandberg R, Moore FR (1996) Fat stores and arrival on the breeding grounds: reproductive consequences for passerine migrants. Oikos 77:577–581

    Article  Google Scholar 

  • Scott I, Grant M, Evans P (1991) Estimation of fat-free mass of live birds: use of total electrical conductivity (TOBEC) measurements in studies of single species in the field. Funct Ecol 5:314–320

    Article  Google Scholar 

  • Scott I, Selman C, Mitchell PI, Evans PR (2001) The use of total body electrical conductivity (TOBEC) to determine body composition in vertebrates. In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 127–160

    Chapter  Google Scholar 

  • Seewagen CL (2007) An evaluation of condition indices and predictive models for noninvasive estimates of lipid mass of migrating common yellowthroats, ovenbirds, and Swainson’s thrushes. J Field Ornithol 79:80–86

    Article  Google Scholar 

  • Servello F, Hellgren EC, McWilliams SR (2005) Techniques for wildlife nutrition research. In: Braun E (ed) Research and management techniques for wildlife and habitat. The Wildlife Society, Washington, pp 554–590

    Google Scholar 

  • Skagen SK, Knopf FL, Cade BS (1993) Estimation of lipids and lean mass of migrating sandpipers. Condor 95:944–956

    Article  Google Scholar 

  • Smith SB, McPherson KH, Backer JM, Pierce BJ, Podlesak DW, McWilliams SR (2007) Fruit quality and consumption by songbirds during autumn migration. Wilson J Ornithol 119:419–428

    Article  Google Scholar 

  • Speakman JR (ed) (2001) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Speakman JR, Visser GH, Ward S, Krol E (2001) The isotope dilution method for the evaluation of body composition. In: Speakman JR (ed) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 56–98

    Chapter  Google Scholar 

  • Spengler TJ, Leberg PL, Barrow WC Jr (1995) Comparison of condition indices in migratory passerines at a stopover site in coastal Louisiana. Condor 97:438–444

    Article  Google Scholar 

  • Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Int Comp Biol 46:1169–1190

    Article  CAS  Google Scholar 

  • Taicher GZ, Tinsley FC, Reiderman A, Heiman ML (2003) Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 377:990–1002

    Article  PubMed  CAS  Google Scholar 

  • Tatner P (1990) Deuterium and oxygen-18 abundance in birds: implications for DLW energetic studies. Am Physiol Soc 258:R804–R812

    CAS  Google Scholar 

  • Tinsley FC, Taiocher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 12:150–160

    Article  PubMed  Google Scholar 

  • van der Meer J, Piersma T (1994) Physiologically inspired regression models for estimating and predicting nutrient stores and their composition in birds. Physiol Zool 67:305–329

    Google Scholar 

  • Walsberg GE (1988) Evaluation of a non-destructive method for determining fat stores in small birds and mammals. Physiol Zool 61:153–159

    Google Scholar 

  • Whitman M (2002) Quantifying body condition of songbirds at a migration stopover site in coastal southern New England. M.Sc. thesis. University of Rhode Island, Kingston

  • Wiersma P, Piersma T (1995) Scoring abdominal profiles to characterize migratory cohorts of shorebirds: an example with Red Knots. J Field Ornithol 66:88–98

    Google Scholar 

  • Wilkinson L (1992) SYSTAT for Windows, Version 5 edition. SYSTAT, Evanston

    Google Scholar 

  • Wirestam R, Fagerlund T, Rosén M, Hedenström A (2009) Magnetic resonance imaging for non-invasive analysis of fat storage in migratory birds. Auk 125:965–971

    Article  Google Scholar 

  • Yong W, Moore FR (1997) Spring stopover of intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. Auk 114:263–278

    Article  Google Scholar 

  • Zar J (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank the following for their knowledgeable advice and assistance in the field: Anne Peterka, Jim Lawrence, Michelle Rogne, Michael Vamstad, CJ Hazell, and Kim Gaffett. Invaluable logistical support was provided by Interstate Navigation Company, by Scott Comings and the Block Island Field Office of The Nature Conservancy, and by William and Margaret Comings. Mrs. Elise Lapham graciously granted access to the field site. We thank Barbara Pierce for her unparalleled support in the lab and in the field, as well as for numerous stimulating discussions. Thanks to W.H. Karasov, B. Pinshow, C. Guglielmo, and F. Moore for advice during the development of these methods and the validation study, and for reviewing earlier drafts of the methods and this manuscript. All research was conducted as authorized by the U.S. Fish and Wildlife Service (no. MB003201), Rhode Island Department of Environmental Management (no. 99-27), and the University of Rhode Island IACUC (no. AN02-03-022). Funding for this work was provided by the University of Rhode Island Agricultural Experiment Station (Contribution no. 5324), and a National Science Foundation grant (IBN-9984920) to S.R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. McWilliams.

Additional information

Communicated by C.G. Guglielmo.

Appendix

Appendix

See Table 9.

Table 9 Intra- and interspecific models for estimating fat mass (F) given deuterium dilution space (S) and body mass (m b ) using all 59 individuals: Black-throated Blue Warbler (Setophaga caerulescens, n = 12); Yellow-rumped Warbler (S. coronata, n = 15); Red-eyed Vireo (Vireo olivaceus, n = 16); White-throated Sparrow (Zonotrichia albicollis, n = 16). Intra- and interspecific models for estimating lean mass (LM) given total body electrical conductivity (TOBEC), tarsus length (T) or bill depth (BD), and/or m b using 47 individuals: S. coronata (n = 15); V. olivaceus (n = 17); Z. albicollis (n = 15)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McWilliams, S.R., Whitman, M. Non-destructive techniques to assess body composition of birds: a review and validation study. J Ornithol 154, 597–618 (2013). https://doi.org/10.1007/s10336-013-0946-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0946-3

Keywords

Navigation