Skip to main content
Log in

Accurate assessment of carotid artery stenosis in atherosclerotic mice using accelerated high-resolution 3D magnetic resonance angiography

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

High-resolution magnetic resonance angiography (MRA) enables non-invasive detection and longitudinal monitoring of atherosclerosis in mouse models of human disease. However, MRA is hampered by long acquisition times putting high demands on the physiological stability of the animal. Therefore, we evaluated the feasibility of accelerated MRA using the parallel imaging technique SENSE with regard to both lesion detection and quantification.

Materials and methods

MRA acquisitions of supra-aortic vessels were performed in ApoE −/− mice that have been shown to develop atherosclerotic plaques. Findings obtained from accelerated data sets were compared to fully sampled reference data sets and histology.

Results

Our results revealed only minor differences in detecting vascular lesions for data collections accelerated by factors of up to 3.3 using a four-element coil array. For vessels with a mean lumen diameter of 500 μm, morphometry of stenotic lesions revealed no substantial deviations from reference (fully sampled) data for all investigated acceleration factors. For the highest acceleration factor of 3.3, an average deviation of the degree of stenosis of 4.9 ± 3.6% was found. Common carotid stenoses assessed by in vivo MRA displayed a good correlation with histological analyses (slope of linear regression = 0.97, R 2 = 0.98).

Conclusion

According to the results of this work, we have demonstrated the feasibility and accuracy of accelerated high-resolution 3D ToF MRA in mice suitable for detailed depiction of mouse supra-aortic vessels and amenable to non-invasive quantification of small atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fayad ZA, Fallon JT, Shinnar M et al (1998) Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98: 1541–1547

    CAS  PubMed  Google Scholar 

  2. Manka DR, Gilson W, Sarembock I et al (2000) Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse. J Magn Reson Imaging 12: 790–794

    Article  CAS  PubMed  Google Scholar 

  3. Itskovich VV, Choudhury RP, Aguinaldo JG et al (2003) Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation. Magn Reson Med 49: 381–385

    Article  CAS  PubMed  Google Scholar 

  4. Wiesmann F, Szimtenings M, Frydrychowicz A et al (2003) High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn Reson Med 50: 69–74

    Article  PubMed  Google Scholar 

  5. Trogan E, Fayad ZA, Itskovich VV et al (2004) Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler Thromb Vasc Biol 24: 1714–1719

    Article  CAS  PubMed  Google Scholar 

  6. Alsaid H, Sabbah M, Bendahmane Z et al (2007) High-resolution contrast-enhanced MRI of atherosclerosis with digital cardiac and respiratory gating in mice. Magn Reson Med 58: 1157–1163

    Article  PubMed  Google Scholar 

  7. Weinreb DB, Aguinaldo JG, Feig JE et al (2007) Non-invasive MRI of mouse models of atherosclerosis. NMR Biomed 20: 256–264

    Article  PubMed  Google Scholar 

  8. Jacoby C, Boring YC, Beck A et al (2008) Dynamic changes in murine vessel geometry assessed by high-resolution magnetic resonance angiography: a 9.4 T study. J Magn Reson Imaging 28: 637–645

    Article  PubMed  Google Scholar 

  9. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962

    Article  CAS  PubMed  Google Scholar 

  10. Weiger M, Pruessmann KP, Kassner A et al (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12: 671–677

    Article  CAS  PubMed  Google Scholar 

  11. Plump AS, Smith JD, Hayek T et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71: 343–353

    Article  CAS  PubMed  Google Scholar 

  12. Zhang SH, Reddick RL, Piedrahita JA et al (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258: 468–471

    Article  CAS  PubMed  Google Scholar 

  13. Miraux S, Franconi JM, Thiaudiere E (2006) Blood velocity assessment using 3D bright-blood time-resolved magnetic resonance angiography. Magn Reson Med 56: 469–473

    Article  PubMed  Google Scholar 

  14. Weiger M, Pruessmann KP, Boesiger P (2002) 2D SENSE for faster 3D MRI. Magn Reson Mater Phy 14: 10–19

    Google Scholar 

  15. de Zwart JA, van Gelderen P, Kellman P et al (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48: 1011–1020

    Article  PubMed  Google Scholar 

  16. Roemer PB, Edelstein WA, Hayes CE et al (1990) The NMR phased array. Magn Reson Med 16: 192–225

    Article  CAS  PubMed  Google Scholar 

  17. Rose A (1948) The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am 38: 196–208

    Article  CAS  PubMed  Google Scholar 

  18. Ratering D, Baltes C, Nordmeyer-Massner J et al (2008) Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain. Magn Reson Med 59: 1440–1447

    Article  CAS  PubMed  Google Scholar 

  19. Baltes C, Radzwill N, Bosshard S et al (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22: 834–842

    Article  PubMed  Google Scholar 

  20. Ota R, Kurihara C, Tsou TL et al (2009) Roles of matrix metalloproteinases in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 29: 1547–1558

    Article  CAS  PubMed  Google Scholar 

  21. Sutton MA, Ke X, Lessner SM et al (2008) Strain field measurements on mouse carotid arteries using microscopic three- dimensional digital image correlation. J Biomed Mater Res A 84: 178–190

    CAS  PubMed  Google Scholar 

  22. d’Uscio LV, Smith LA, Katusic ZS (2001) Hypercholesterolemia impairs endothelium-dependent relaxations in common carotid arteries of apolipoprotein e-deficient mice. Stroke 32: 2658–2664

    Article  PubMed  Google Scholar 

  23. Cook NS, Zerwes HG, Pally C et al (1994) Decreased lumen size after balloon injury despite inhibition of neointimal thickening and antivasospastic treatment. Cardiovasc Res 28: 215–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratering, D., Baltes, C., Lohmann, C. et al. Accurate assessment of carotid artery stenosis in atherosclerotic mice using accelerated high-resolution 3D magnetic resonance angiography. Magn Reson Mater Phy 24, 9–18 (2011). https://doi.org/10.1007/s10334-010-0227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0227-6

Keywords

Navigation