Skip to main content
Log in

Evaluation of strength distribution at cut slope of decomposed granite with the use of sounding method and geophysical exploration method

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Natural slopes and cut slopes frequently collapse due to heavy rain and earthquakes, causing disasters. Countermeasures must be applied to mitigate such disasters. There is an especially high risk of a collapse at the surface layer of slopes, and thus, evaluating the strength distribution in the surface layer in detail is important to mitigating and preventing disasters. As simple investigation methods for these purposes, there are sounding methods and geophysical exploration methods. In the present study, dynamic cone penetration (DCP) is selected as the sounding method, and the surface wave method (SWM) is selected as the geophysical exploration method. The strength parameters are generally assumed based on standard penetration tests (SPTs), but DCP tests are simpler than SPTs and can be applied to narrow spaces. On the other hand, the SWM can be used to investigate wide spaces in a short time. We developed a synthesized approach to the geophysical exploration method and the sounding method. The two results obtained from the SWM and the DCP tests—namely the shear velocity and the DCP blow count, respectively—need to be converted to the standard penetration test blow count in order to be synthesized. An indicator simulation, one of the geostatistical methods, is employed to simulate the random field of N values by synthesizing the two results. The proposed procedure is applied to evaluate the strength of the weak surface layer of a cut slope composed of weathered granite, and its applicability for practical use is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19(6):716–723

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1992) Geostatistical software library and user’s guide. Oxford University Press, Oxford

    Google Scholar 

  • Fenton GA (1999) Random field modelling of CPT data. J Geotech Geoenviron Eng ASCE 125(6):486–498

    Article  Google Scholar 

  • Japanese Geotechnical Society, Maruzen (2018) Japanese geotechnical society standards-geotechnical and geoenvironmental investigation methods, vol 2

  • Nishimura et al (2011) Prediction of spatial distribution for n-value in earth-fill embankments. J Jpn Soc Civ Eng 67(2):252–263

    Google Scholar 

  • Ortiz JM, Deutsch CV (2004) Indicator simulation accounting for multiple-point statistics. Math Geol 36(5):545–565

    Article  CAS  Google Scholar 

  • Sugiyama et al (1992) Spatial distribution characteristics of soil strength in embankment surface. J Jpn Soc Civ Eng 457/III-21:33–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Ueta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueta, T., Nishimura, SI., Imaide, K. et al. Evaluation of strength distribution at cut slope of decomposed granite with the use of sounding method and geophysical exploration method. Paddy Water Environ 17, 291–297 (2019). https://doi.org/10.1007/s10333-019-00722-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-019-00722-5

Keywords

Navigation